【題目】已知矩形ABCD,AB=10,BC=13,點(diǎn)P為邊AD上一動(dòng)點(diǎn),點(diǎn)A’與點(diǎn)A關(guān)于BP對(duì)稱,連結(jié)A’C,當(dāng)△A’BC為等腰三角形時(shí),AP的長(zhǎng)度為()
A.2B.C.2或
D.2或
【答案】C
【解析】
①如圖1,當(dāng)A′B=A′C時(shí),過A′作A′M⊥BC于M反向延長(zhǎng)A′M交AD于N,則MN⊥AD,得到MN垂直平分BC和AD,根據(jù)軸對(duì)稱的性質(zhì)得到AB=A′B=10,∠PA′B=∠A=90°,根據(jù)勾股定理得到A′M=,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;②當(dāng)A′B=BC時(shí),這種情況不存在;③如圖2,當(dāng)A′C=BC=13時(shí),過A′作A′M⊥BC于M反向延長(zhǎng)A′M交AD于N,則MN⊥AD,過C作CH⊥A′B于H,由勾股定理得到CH=
,根據(jù)三角形的面積公式得到A′M=
,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解:∵△A′BC為等腰三角形,
∴①如圖1,當(dāng)A′B=A′C時(shí),過A′作A′M⊥BC于M反向延長(zhǎng)A′M交AD于N,
則MN⊥AD,
∴MN垂直平分BC和AD,
∵BC=13,
∴BM=AN=,
∵點(diǎn)A′與點(diǎn)A關(guān)于BP對(duì)稱,
∴△ABP≌△A′BP,
∴AB=A′B=10,∠PA′B=∠A=90°,
∴A′M=,
∴A′N=MN-A′M=,
∵∠PA′N+∠A′PN=∠PA′N+∠BA′M=90°,
∴∠A′PN=∠BA′M,
∵∠PNA′=∠A′MB=90°,
∴△A′PN∽△BA′M,
∴,
∴,
∴A′P=,
∴AP=A′P=,
②當(dāng)A′B=BC時(shí),
∵A′B=AB=10,
∴這種情況不存在;
③如圖2,當(dāng)A′C=BC=13時(shí),
過A′作A′M⊥BC于M反向延長(zhǎng)A′M交AD于N,則MN⊥AD,過C作CH⊥A′B于H,
∴BH=×10=5,
∴CH=,
∴A′M=,
∴A′N=,BM=
,
由①知,,
∴,
∴A′P=AP=2,
綜上所述,AP的長(zhǎng)度為2或;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富學(xué)生課余生活,某區(qū)教育部門準(zhǔn)備在七年級(jí)開設(shè)興趣課堂.為了了解學(xué)生對(duì)音樂、書法、球類、繪畫這四個(gè)興趣小組的喜愛情況,在全區(qū)進(jìn)行隨機(jī)抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計(jì)圖(信息不完整),請(qǐng)根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了多少名同學(xué)?
(2)將條形圖補(bǔ)充完整,并計(jì)算扇形統(tǒng)計(jì)圖中音樂部分的圓心角的度數(shù)
(3)如果該區(qū)七年級(jí)共有2000名學(xué)生參加這4個(gè)課外興趣小組,而每名教師最多只能輔導(dǎo)本組的20名學(xué)生,則繪畫興趣小組至少需要準(zhǔn)備多少名教師?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線∥
,一圓交直線a,b分別于A、B、C、D四點(diǎn),點(diǎn)P是圓上的一個(gè)動(dòng)點(diǎn),連接PA、PC.
(1)如圖1,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為 ;
(2)如圖2,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為
(3)如圖3,求證:∠P=∠PAB+∠PCD;
(4)如圖4,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)E為AB中點(diǎn),連接CE,將頂點(diǎn)B沿CE折疊至點(diǎn)P處,連接AP并延長(zhǎng)交邊CD于點(diǎn)F,
(1)判斷四邊形AECF為的形狀并說(shuō)明理由;
(2)若點(diǎn)P同時(shí)可看作是B點(diǎn)繞C點(diǎn)順時(shí)針旋轉(zhuǎn)60°得到,求證:△APB≌△ECP;
(3)若AB=6,BC=4,求 的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點(diǎn)為E,該拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且BO=OC=3AO,直線y=﹣x+1與y軸交于點(diǎn)D.
(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PBC是等腰三角形?若存在,請(qǐng)直接寫出符合條件的P點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接邊境貿(mào)易博覽會(huì),組織部門決定利用現(xiàn)有的3490盆甲種花卉和2950盆乙種花卉搭配A、B兩種園藝造型共50個(gè)擺放在迎賓大道兩側(cè),已知搭配一個(gè)A種造型需甲種花卉80盆,乙種花卉40盆,搭配一個(gè)B種造型需甲種花卉50盆,乙種花卉90盆.
(1)某校九年級(jí)(1)班課外活動(dòng)小組承接了這個(gè)園藝造型搭配方案的設(shè)計(jì),問符合題意的搭配方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來(lái).
(2)若搭配一個(gè)A種造型的成本是800元,搭配一個(gè)B種造型的成本是960元,試說(shuō)明(1)中哪種方案成本最低?最低成本是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD的對(duì)角線交于點(diǎn)E,將△DCB沿CD翻折得到△DCF.
(1)求證:四邊形ACFD是平行四邊形;
(2)點(diǎn)H為DF的中點(diǎn),連結(jié)CH,若AB=4,BC=2,求四邊形ECHD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻的轉(zhuǎn)盤,甲轉(zhuǎn)盤被分成3個(gè)面積相等
的扇形,乙轉(zhuǎn)盤被分成4個(gè)面積相等的扇形,每一個(gè)扇形都標(biāo)有相應(yīng)的數(shù)字,同時(shí)轉(zhuǎn)
動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為m,乙轉(zhuǎn)盤中指針
所指區(qū)域內(nèi)的數(shù)字為n(若指針指在邊界線上時(shí),重轉(zhuǎn)一次,直到指針都指向一個(gè)區(qū)
域?yàn)橹梗?/span>
【1】請(qǐng)你用畫樹狀圖或列表格的方法求出|m+n|>1的概率
【2】直接寫出點(diǎn)(m,n)落在函數(shù)y=- 圖象上的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知,
,
三點(diǎn),其中a=
,b,c滿足關(guān)系式
,P是第二象限內(nèi)一點(diǎn),連接PO,且P、A、C三點(diǎn)在一條直線上.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)若規(guī)定:在三角形中,若兩條邊相等,則這兩條邊與第三邊的夾角相等。如在△DEF中,DE=DF,則∠E=∠F.在本圖中若PA=PO,AB=AC,CB⊥OB,垂足為B.求證:AB∥PO.
(3)如果在第二象限內(nèi)有一點(diǎn)P(-2,),求四邊形POBC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com