分析 (I)①根據(jù)余角定義可得∠BOC的余角;利用同角的余角相等可得∠AOB=∠COD;
②首先計(jì)算出∠COD的度數(shù),再根據(jù)余角定義可得∠BOC的度數(shù);
(II)①根據(jù)余角定義可得∠AOC=90°,然后根據(jù)角平分線定義可得∠AOB的度數(shù),再根據(jù)角的和差關(guān)系可得答案;
②首先計(jì)算出∠DOC的度數(shù),然后再設(shè)∠BOC=x°,則∠DOC=4x°,進(jìn)而可得4x=60,解方程即可.
解答 解:(I)①∵∠AOC=∠BOD=90°,
∴∠BOC+∠AOB=90°,∠BOC+∠COD=90°,
∴∠BOC的余角是∠AOB和∠COD,
故答案為:∠AOB和∠COD;
∵∠AOC=∠BOD=90°,
∴∠BOC+∠AOB=90°,∠BOC+∠COD=90°,
∴∠AOB=∠COD(同角的余角相等),
故答案為:=;同角的余角相等;
②∵∠AOD=150°,∠AOC=90°,
∴∠DOC=60°,
∵∠BOD=90°,
∴∠BOC=30°,
故答案為:30°;
(II)①∵∠AOB與∠BOC互為余角,
∴∠AOC=∠AOB+∠BOC=90°,
∵BO平分∠AOD,
∴∠AOB=$\frac{1}{2}$∠AOD=$\frac{1}{2}×$150°=75°,
∴∠BOC=∠AOC-∠AOB=90°-75°=15°;
②∵∠AOB與∠BOC互為余角,
∴∠AOC=∠AOB+∠BOC=90°,
∵∠DOC=∠AOD-∠AOC=150°-90°=60°,
∵∠DOC是∠BOC的4倍,
∴設(shè)∠BOC=x°,則∠DOC=4x°,
∴4x=60,
x=15,
則∠BOC=15°.
點(diǎn)評(píng) 此題主要考查了角的計(jì)算以及余角定義,關(guān)鍵是理清圖中角之間的關(guān)系,掌握兩角和為90°為互余.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com