【題目】如圖,拋物線與
軸交于點(diǎn)
,點(diǎn)
,與
軸交于點(diǎn)
,點(diǎn)
與點(diǎn)
關(guān)于
軸對(duì)稱(chēng),點(diǎn)
是
軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)
的坐標(biāo)為
,過(guò)點(diǎn)
作
軸的垂線
交拋物線于點(diǎn)
.
(1)求點(diǎn),點(diǎn)
,點(diǎn)
的坐標(biāo);
(2)求直線的解析式;
(3)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)
,使
是以
為直角邊的直角三角形?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)
;(3)存在,點(diǎn)
的坐標(biāo)為
或
或
【解析】
(1)根據(jù)函數(shù)解析式列方程即可得到結(jié)論;
(2)由點(diǎn)C與點(diǎn)D關(guān)于x軸對(duì)稱(chēng),得到D(0,-2),解方程即可得到結(jié)論;
(3)設(shè)點(diǎn)Q的坐標(biāo)為(m,- m+2),分兩種情況:①當(dāng)∠QBD=90°時(shí),根據(jù)勾股定理列方程求得m=3,m=4(不合題意,舍去),②當(dāng)∠QDB=90°時(shí),根據(jù)勾股定理列方程求得m=8,m=-1,于是得到結(jié)論.
解:(1)當(dāng)時(shí),
,即
點(diǎn)坐標(biāo)為
;
當(dāng)時(shí),即
,
解得,
即.
(2)∵點(diǎn)與點(diǎn)
關(guān)于
軸對(duì)稱(chēng),
.
設(shè)直線的解析式為
,
將點(diǎn)坐標(biāo)代入解析式,
得解得
∴直線的解析式為y=
x-2.
(3)存在.∵點(diǎn)的坐標(biāo)為
軸交拋物線于點(diǎn)
,
∴點(diǎn)的坐標(biāo)為
.
是以
為直角邊的直角三角形,
①當(dāng)時(shí),由勾股定理,得
,
即,
解得(不符合題意,舍去),
;
②當(dāng)時(shí),由勾股定理,得
,
即,
解得,
或
.
綜上所述,存在點(diǎn)的坐標(biāo)為
或
或
,使
是以
為直角邊的直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是
的直徑,且
,點(diǎn)
均在
上,
的延長(zhǎng)線交
的延長(zhǎng)線于點(diǎn)
,過(guò)點(diǎn)
作
的切線
交
于點(diǎn)
,連接
,
,
,
.
(1)求證:.
(2)填空:
①當(dāng)__________,
是等腰直角三角形;
②當(dāng)__________,四邊形
是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ABC=120°,線段AC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CD,連接BD.
(1)如圖1,若AB=BC,求證:BD平分∠ABC;
(2)如圖2,若AB=2BC,
①求的值;
②連接AD,當(dāng)S△ABC=時(shí),直接寫(xiě)出四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形紙片ABCD邊長(zhǎng)為6,點(diǎn)E,F分別是AB,CD的中點(diǎn),點(diǎn)G,H分別在AD,AB上,將紙片沿直線GH對(duì)折,當(dāng)頂點(diǎn)A與線段EF的三等分點(diǎn)重合時(shí),AH的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列命題中:①過(guò)一點(diǎn)有且只有一條直線與已知直線平行;②平方根與立方根相等的數(shù)有和
;③在同一平面內(nèi),如果
,
,則
;④直線
外一點(diǎn)
與直線
上各點(diǎn)連接而成的所有線段中,最短線段的長(zhǎng)是
,則點(diǎn)
到直線
的距離是
;⑤無(wú)理數(shù)包括正無(wú)理數(shù)、零和負(fù)無(wú)理數(shù).其中真命題的個(gè)數(shù)是( )
A. 個(gè)B.
個(gè)C.
個(gè)D.
個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中紅球有2個(gè),藍(lán)球有1個(gè),現(xiàn)從中任意摸出一個(gè)是紅球的概率為.
(1)求袋中黃球的個(gè)數(shù);
(2)第一次摸出一個(gè)球(不放回),第二次再摸一個(gè)小球,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求兩次摸到都是紅球的概率;
(3)若規(guī)定摸到紅球得5分,摸到黃球得3分,摸到藍(lán)球得1分,小明共摸6次小球(每次摸1個(gè)球,摸后放回)得20分,問(wèn)小明有哪幾種摸法?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CP=CQ=2,將三角板CPQ繞點(diǎn)C旋轉(zhuǎn)(點(diǎn)P在△ABC內(nèi)部),連接AP、BP、BQ.
(1)求證:AP=BQ;
(2)當(dāng)PQ⊥BQ時(shí),求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,一次函數(shù)的圖像交x軸于點(diǎn)A,交y軸于點(diǎn)B且與反比例函數(shù)
(k為常數(shù),k≠0)的圖象分別交于C、D兩點(diǎn),過(guò)點(diǎn)C作
軸于M,
,
,
(1)求直線AB和反比例函數(shù)的解析式.
(2)結(jié)合圖象直接寫(xiě)出:當(dāng)時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是圓
的兩條弦,
于
,連接
,過(guò)點(diǎn)
作
,垂足為
.
(1)如圖1,連接,求證:
;
(2)如圖2,連接并延長(zhǎng)交
于點(diǎn)
,若
平分
,求圓
的半徑和
的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com