日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,在中,分別是、的中點(diǎn),,延長到點(diǎn),使得,連接

          1)求證:四邊形BCEF是菱形;

          2)若,,求菱形BCEF的面積.

          【答案】1)見解析;(218

          【解析】

          1)由D、E分別是AB、AC的中點(diǎn),BE2DE,易證得EFBCEFBC,即可判定四邊形BCFE是平行四邊形,又由EFBE,即可證得四邊形BCFE是菱形;

          2)由∠BCF120°,易證得△EBC是等邊三角形,又由CE6,即可求得菱形BCFE的高,繼而求得菱形BCFE的面積.

          解:(1)證明:∵D、E分別是AB、AC的中點(diǎn),

          ∴DE∥BC2DE=BC,

          ∵BE=2DE,EF=BE,

          ∴EF=BC,EF∥BC

          四邊形BCFE是平行四邊形,

          ∵BE=EF

          四邊形BCFE是菱形;

          2)解:∵∠BEF=120°,

          ∴∠EBC=60°

          ∴△EBC是等邊三角形,

          ∴BE=BC=CE=6,

          過點(diǎn)EEG⊥BC于點(diǎn)G,

          ∴EG=BEsin60°=6×=3,

          ∴S菱形BCFE=BCEG=6×3=18

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).

          (1求拋物線的解析式;(2過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

          (3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某水果商計(jì)劃購進(jìn)甲、乙兩種水果進(jìn)行銷售,經(jīng)了解,甲種水果的進(jìn)價(jià)比乙種水果的進(jìn)價(jià)每千克少4元,且用800元購進(jìn)甲種水果的數(shù)量與用1000元購進(jìn)乙種水果的數(shù)量相同.

          1)求甲、乙兩種水果的單價(jià)分別是多少元?

          2)該水果商根據(jù)該水果店平常的銷售情況確定,購進(jìn)兩種水果共200千克,其中甲種水果的數(shù)量不超過乙種水果數(shù)量的3倍,且購買資金不超過3420元,購回后,水果商決定甲種水果的銷售價(jià)定為每千克20元,乙種水果的銷售價(jià)定為每千克25元,則水果商應(yīng)如何進(jìn)貨,才能獲得最大利潤,最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】將一副直角三角板如圖①擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊與含30°角的直角三角板DEF的長直角邊DE重合,DF=8

          1)若PBC上的一個(gè)動(dòng)點(diǎn),當(dāng)PA=DF時(shí),求此時(shí)∠PAB的度數(shù);

          2)將圖①中的等腰直角三角板ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)30°,點(diǎn)C落在BF上,ACBD交于點(diǎn)O,連接CD,如圖②.

          ①探求CDO的形狀,并說明理由;

          ②在圖①中,若PBC的中點(diǎn),連接FP,將等腰直角三角板ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角α= 時(shí),FP長度最大,最大值為 (直接寫出答案即可).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)的圖象的對(duì)稱軸為直線.

          1)求的值;

          2)將函數(shù)的圖象向右平移2個(gè)單位,得到新的函數(shù)圖象

          直接寫出函數(shù)圖象的表達(dá)式;

          設(shè)直線軸交于點(diǎn)A,與y軸交于點(diǎn)B,當(dāng)線段AB與圖象只有一個(gè)公共點(diǎn)時(shí),直接寫出的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,ABAC,點(diǎn)Ay軸上,點(diǎn)Cx軸上,BCx軸,tanACO.延長AC到點(diǎn)D,過點(diǎn)DDEx軸于點(diǎn)G,且DGGE,連接CE,反比例函數(shù)yk0)的圖象經(jīng)過點(diǎn)B,和CE交于點(diǎn)F,且CFFE21.若△ABE面積為6,則點(diǎn)D的坐標(biāo)為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校組織學(xué)生到恩格貝和康鎮(zhèn)進(jìn)行研學(xué)活動(dòng),澄澄老師在網(wǎng)上查得,分別位于學(xué)校的正北和正東方向,位于南偏東37°方向,校車從出發(fā),沿正北方向前往地,行駛到15千米的處時(shí),導(dǎo)航顯示,在處北偏東45°方向有一服務(wù)區(qū),且位于兩地中點(diǎn)處.

          1)求,兩地之間的距離;

          2)校車從地勻速行駛1小時(shí)40分鐘到達(dá)地,若這段路程限速100千米/時(shí),計(jì)算校車是否超速?

          (參考數(shù)據(jù):,

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,分別是可活動(dòng)的菱形和平行四邊形學(xué)具,已知平行四邊形較短的邊與菱形的邊長相等.

          1)在一次數(shù)學(xué)活動(dòng)中,某小組學(xué)生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過點(diǎn)C,連接DEAF于點(diǎn)M,觀察發(fā)現(xiàn):點(diǎn)MDE的中點(diǎn).

          下面是兩位學(xué)生有代表性的證明思路:

          思路1:不需作輔助線,直接證三角形全等;

          思路2:不證三角形全等,連接BDAF于點(diǎn)H.…

          請(qǐng)參考上面的思路,證明點(diǎn)MDE的中點(diǎn)(只需用一種方法證明);

          2)如圖2,在(1)的前提下,當(dāng)∠ABE=135°時(shí),延長AD、EF交于點(diǎn)N,求的值;

          3)在(2)的條件下,若=kk為大于的常數(shù)),直接用含k的代數(shù)式表示的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,拋物線yax+2)(x6)(a0)與x軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),與y軸負(fù)半軸交于點(diǎn)A

          1)若ACD的面積為16

          ①求拋物線解析式;

          S為線段OD上一點(diǎn),過Sx軸的垂線,交拋物線于點(diǎn)P,將線段SCSP繞點(diǎn)S順時(shí)針旋轉(zhuǎn)任意相同的角到SC1,SP1的位置,使點(diǎn)CP的對(duì)應(yīng)點(diǎn)C1,P1都在x軸上方,C1CP1S交于點(diǎn)M,P1Px軸交于點(diǎn)N.求的最大值;

          2)如圖2,直線yx12ax軸交于點(diǎn)B,點(diǎn)M在拋物線上,且滿足∠MAB75°的點(diǎn)M有且只有兩個(gè),求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案