日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線過點(diǎn),點(diǎn)為線段上一個動點(diǎn)(點(diǎn)與點(diǎn)不重合),過點(diǎn)作垂直于軸的直線與直線和拋物線分別交于點(diǎn)

          1)求此拋物線的解析式;

          2)若點(diǎn)的中點(diǎn),則求點(diǎn)的坐標(biāo);

          3)若以點(diǎn)為頂點(diǎn)的三角形與相似,請直接寫出點(diǎn)的坐標(biāo).

          【答案】1;(2;(3P(,)P(,)

          【解析】

          (1)A點(diǎn)坐標(biāo)和B點(diǎn)坐標(biāo)代入,解方程組即可;

          (2)m可表示出P、N的坐標(biāo),由題意可知有P為線段MN的中點(diǎn),可得到關(guān)于m的方程,可求得m的值,即可求得點(diǎn)的坐標(biāo);

          (3) m可表示出NP,PM,AM,分當(dāng)∠BNP=90°時和當(dāng)∠NBP=90°時兩種情況討論即可.

          解: (1) 拋物線經(jīng)過點(diǎn)

          解得

          (2)由題意易得,直線的解析式為

          ,設(shè),

          ,

          點(diǎn)的中點(diǎn),即

          ,解得 ()

          (3)

          ,設(shè)

          ,AM=3m,
          ∵△BPN和△APM相似,且∠BPN=APM,
          ∴∠BNP=AMP=90°或∠NBP=AMP=90°,
          當(dāng)∠BNP=90°時,則有BNMN,
          N點(diǎn)的縱坐標(biāo)為2,
          =2,
          解得m=0(舍去)m=
          P(,);
          當(dāng)∠NBP=90°時,過點(diǎn)NNCy軸于點(diǎn)C,

          則∠NBC+BNC=90°,NC=m,BC=2=
          ∵∠NBP=90°,
          ∴∠NBC+ABO=90°,
          ∴∠ABO=BNC,
          RtNCBRtBOA,
          ,
          m2=,
          解得m=0(舍去)m=,
          P(,),
          綜上可知,當(dāng)以B,P,N為頂點(diǎn)的三角形與△APM相似時,點(diǎn)P的坐標(biāo)為P(,)P(,)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:在平面直角坐標(biāo)系中,拋物線)與直線交于點(diǎn)(點(diǎn)在點(diǎn)右邊),將拋物線沿直線翻折,翻折前后兩拋物線的頂點(diǎn)分別為點(diǎn)、,我們將兩拋物線之間形成的封閉圖形稱為驚喜線,四邊形稱為驚喜四邊形,對角線之比稱為驚喜度(Degree of surprise),記作.

          1)如圖(1)拋物線沿直線翻折后得到驚喜線.則點(diǎn)坐標(biāo) ,點(diǎn)坐標(biāo) ,驚喜四邊形屬于所學(xué)過的哪種特殊平行四邊形? , .

          2)如果拋物線)沿直線翻折后所得驚喜線的驚喜度為1,求的值.

          3)如果拋物線沿直線翻折后所得的驚喜線在時,其最高點(diǎn)的縱坐標(biāo)為16,求的值并直接寫出驚喜度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在一個不透明的袋子中,裝有除顏色外都完全相同的4個紅球和若干個黃球.

          如果從袋中任意摸出一個球是紅球的概率為,那么袋中有黃球多少個?

          的條件下如果從袋中摸出一個球記下顏色后放回,再摸出一個球,用列表或畫樹狀圖的方法求出兩次摸出不同顏色球的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,拋物線yax2+bx+c經(jīng)過A0,﹣4)和B2,0)兩點(diǎn).

          1)求c的值及a,b滿足的關(guān)系式;

          2)若拋物線在AB兩點(diǎn)間,從左到右上升,求a的取值范圍;

          3)拋物線同時經(jīng)過兩個不同的點(diǎn)Mpm),N(﹣2p,n).

          ①若mn,求a的值;

          ②若m=﹣2p3n2p+1,求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校開展了主題為“垃圾分類,綠色生活新時尚”的宣傳活動,為了解學(xué)生對垃圾分類知識的掌握情況,該校環(huán)保社團(tuán)成員在校園內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查將他們的得分按優(yōu)秀、良好、合格、不合格四個等級進(jìn)行統(tǒng)計,并繪制了如下不完整的統(tǒng)計表和條形統(tǒng)計圖.請根據(jù)圖表信息,解答下列問題:

          本次調(diào)查隨機(jī)抽取了____ 名學(xué)生:表中

          補(bǔ)全條形統(tǒng)計圖:

          若全校有名學(xué)生,請你估計該校掌握垃圾分類知識達(dá)到“優(yōu)秀"和“良好”等級的學(xué)生共有多少人

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在O內(nèi)有折線DABC,點(diǎn)B,CO上,DA過圓心O,其中OA8,AB12,∠A=∠B60°,則BC_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀以下材料,并按要求完成相應(yīng)地任務(wù):

          萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個定理:在△ABC中,Rr分別為外接圓和內(nèi)切圓的半徑,OI分別為其外心和內(nèi)心,則.

          如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點(diǎn)F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點(diǎn))與內(nèi)心I(三角形三條角平分線的交點(diǎn))之間的距離OI=d,則有d2=R2﹣2Rr.

          下面是該定理的證明過程(部分):

          延長AI⊙O于點(diǎn)D,過點(diǎn)I⊙O的直徑MN,連接DM,AN.

          ∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等)

          ∴△MDI∽△ANI,

          ,

          ①,

          如圖2,在圖1(隱去MDAN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BDBI,IF,

          ∵DE⊙O的直徑,∴∠DBE=90°,

          ∵⊙IAB相切于點(diǎn)F∴∠AFI=90°,

          ∴∠DBE=∠IFA

          ∵∠BAD=∠E(同弧所對圓周角相等),

          ∴△AIF∽△EDB

          ,②,

          任務(wù):(1)觀察發(fā)現(xiàn): (用含R,d的代數(shù)式表示);

          (2)請判斷BDID的數(shù)量關(guān)系,并說明理由;

          (3)請觀察式子①和式子②,并利用任務(wù)(1)(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;

          (4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為 cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,菱形ABCD的邊ADy軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)By軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( 。

          A. B. 3 C. D. 5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的四枚郵票圖片形狀完全相同,分別是我國代科學(xué)家祖沖之、李時珍、張衡、僧一行.把四張圖片混合在一起.

          1)若隨機(jī)摸取一張圖片,則摸到“祖沖之”圖片的概率是__________

          2)若隨機(jī)摸取一張圖片然后放回,再隨機(jī)摸取一張圖片,利用列表或樹狀圖求兩次至少有一次摸到“祖沖之”圖片的概率;

          3)小東、小西、小南、小北四位同學(xué)依次摸取圖片,若小東摸到“祖沖之”圖片,則剩下三人中(    )

          A.小西摸到“李時珍”圖片的概率大    B.小南摸到“李時珍”圖片的概率大

          C.小北摸到“李時珍”圖片的概率大    D.三人摸到“李時珍”圖片的概率一樣大

          查看答案和解析>>

          同步練習(xí)冊答案