日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知在△ABC中,BC邊上的高ADAC邊上的高BE交于點F,且∠BAC=45°,BD=6,CD=4,

          (1)求證: AEF ≌ △BEC

          (2)求△ABC的面積

          【答案】1)見解析;(2SABC=60

          【解析】

          1)根據(jù)AAS即可證明;

          2)根據(jù)△ADC∽△BDF,設(shè)DF=x,利用,得到方程求出x,求出高AD的長即可求解.

          1)證:∵AD⊥BCBE⊥AC,∴∠AEF=∠BEC=∠BDF=90°

          ∵∠BAC=45°,∴AE=EB

          ∵∠EAF+∠C=90°,∠CBE+∠C=90°,∴∠EAF=∠CBE,

          ∴△AEF≌△BEC

          2)由(1△AEF≌△BEC ∴AF=BC=10,設(shè)DF=x

          ∵△ADC∽△BDF,

          ,,

          整理得x2+10x24=0,解得x=2或﹣12(舍棄),

          ∴AD=AF+DF=12

          ∴SABC=BCAD=×10×12=60

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.

          (1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?

          (2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在矩形ABCD中,BC=10cm、DC=6cm,點E、F分別為邊AB、BC上的兩個動點,E從點A出發(fā)以每秒5cm的速度向B運動,F從點B出發(fā)以每秒3cm的速度向C運動,設(shè)運動時間為t秒.若∠AFD=AED,則t的值為( 。

          A. B. 0.5C. D. 1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設(shè)點P、Q運動的時間為t秒.

          (1)A、B兩點的坐標(biāo)。

          (2)求當(dāng)t為何值時,△APQ△AOB相似,并直接寫出此時點Q的坐標(biāo).

          (3)當(dāng)t=2時,在坐標(biāo)平面內(nèi),是否存在點M,使以A、P、QM為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtACB中,ACB=90°,AC=BC,D是AB上的一個動點(不與點A,B重合),連接CD,將CD繞點C順時針旋轉(zhuǎn)90°得到CE,連接DE,DE與AC相交于點F,連接AE.下列結(jié)論:①△ACE≌△BCD;②BCD=25°,則∠AED=65°;③DE2=2CFCA;④若AB=3,AD=2BD,則AF=.其中正確的結(jié)論是______.(填寫所有正確結(jié)論的序號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在邊長為2的正方形ABCD中,點P、Q分別是邊AB、BC上的兩個動點(與點A、B、C不重合),且始終保持BP=BQ,AQ⊥QE,QE交正方形外角平分線CE于點E,AE交CD于點F,連結(jié)PQ.

          (1)求證:△APQ≌△QCE;

          (2)求∠QAE的度數(shù);

          (3)設(shè)BQ=x,當(dāng)x為何值時,QF∥CE,并求出此時△AQF的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將△OAB繞點O逆時針旋轉(zhuǎn)80°得到△OCD,點A與點C是對應(yīng)點.

          (1)畫出△OAB關(guān)于點O對稱的圖形(保留畫圖痕跡,不寫畫法);

          (2)若∠A=110°,∠D=40°,求∠AOD的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在不透明的袋子中有四張標(biāo)著數(shù)字 ,,, 的卡片,這些卡片除數(shù)字外都相同.甲同學(xué)按照一定的規(guī)則抽出兩張卡片,并把卡片上的數(shù)字相加.下圖是他所畫的樹狀圖的一部分.

          (1)由上圖分析,甲同學(xué)的游戲規(guī)則是:從袋子中隨機抽出一張卡片后 (填"放回"或"不放回"),再隨機抽出一張卡片;

          (2)幫甲同學(xué)完成樹狀圖;

          (3)求甲同學(xué)兩次抽到的數(shù)字之和為偶數(shù)的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GEBC,垂足為點E,GFCD,垂足為點F.

          (1)證明與推斷:

          ①求證:四邊形CEGF是正方形;

          ②推斷:的值為   

          (2)探究與證明:

          將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說明理由:

          (3)拓展與運用:

          正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CGAD于點H.若AG=6,GH=2,則BC=   

          查看答案和解析>>

          同步練習(xí)冊答案