日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在?ABCD的紙片中,∠A=60°,AB=2cm,若將紙片沿BD折疊,點(diǎn)C落在點(diǎn)E的位置,AD與BE交于點(diǎn)F,且BE⊥AD.則BD的長為
           
           cm.
          分析:由四邊形ABCD是平行四邊形與BE⊥AD,可證得△BFD是等腰直角三角形,由AB=2cm,∠A=60°,在Rt△ABF中,利用勾股定理即可求得BF的長,繼而求得BD的長.
          解答:解:∵四邊形ABCD是平行四邊形,
          ∴AD∥BC,
          ∵BE⊥AD,
          ∴∠AFB=∠DFB=∠FBC=90°,
          ∵∠A=60°,∠FBD=∠CBD,
          ∴∠ABF=30°,∠FBD=∠DBC=45°,
          ∴∠FBD=∠FDB=45°,
          ∴FB=FD,
          ∵AB=2cm,
          ∴AF=1cm,BF=
          3
          cm,
          ∴DF=
          3
          cm,
          ∴BD=
          BF2+FD2
          =
          6
          cm.
          故答案為:
          6
          點(diǎn)評:此題考查了折疊的性質(zhì),矩形的性質(zhì),直角三角形的性質(zhì)等知識.此題難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在?ABCD的紙片中,AC⊥AB,AC與BD相交于點(diǎn)O,將△ABC沿對角線AC翻轉(zhuǎn)180°,得精英家教網(wǎng)到△AB′C.
          (1)以A,C,D,B′為頂點(diǎn)的四邊形是矩形嗎
           
          (請?zhí)睢笆恰、“不是”或“不能確定”);
          (2)若四邊形ABCD的面積S=12cm2,求翻轉(zhuǎn)后紙片重疊部分的面積,即S△ACE=
           
          cm2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          7、如圖,在□ABCD的各邊AB、BC、CD、DA上,分別取點(diǎn)K、L、M、N,使AK=CM、BL=DN,則四邊形KLMN為平行四邊形嗎?說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          探究
          如圖①,在?ABCD的形外分別作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,連接AC、EF.在圖中找一個與△FAE全等的三角形,并加以證明.
          應(yīng)用
          以?ABCD的四條邊為邊,在其形外分別作正方形,如圖②,連接EF、GH、IJ、KL.若?ABCD的面積為5,則圖中陰影部分四個三角形的面積和為
           

          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖①,在?ABCD的形外分別作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,連接AC、EF.在圖中找一個與△FAE全等的三角形,并說明理由.
          【應(yīng)用】
          以?ABCD的四條邊為邊,在其形外分別作正方形,如圖②,連接EF、GH、IJ、KL.若圖中陰影部分四個三角形的面積和為12,則?ABCD的面積為
          6
          6

          查看答案和解析>>

          同步練習(xí)冊答案