日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形ABCD中,FCD上一點,EBF上一點,連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=DAE=70°AE平分∠BAC,則下列結(jié)論中:①ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個數(shù)有( 。

          A.1B.2C.3D.4

          【答案】C

          【解析】

          依據(jù)SAS可證明ABE,由全等三角形的性質(zhì)可得到,則,然后依據(jù)四邊形的內(nèi)角和為可求得的度數(shù),然后再證明,最后,依據(jù)等腰三角形的性質(zhì)可得到ACDE的關系.

          解:∵AB=AC,∠BAC=DAE,AE=AD,

          ABE≌△ACD,故正確.

          ABE≌△ACD,

          ∴∠AEB=ADC

          ∵∠AEB+AEF=180°,

          ∴∠AEF+ADC=180°

          ∴∠BFD=180°-EAD=180°-70°=110°,故正確.

          AE平分∠BAC,

          ∴∠EAC=35°

          又∵∠DAE=70°

          AC平分∠EAD

          又∵AE=AD,

          ACEF,AC平分EF

          ACEF的垂直平分線,故正確.

          由已知條件無法證明BE=EF,故錯誤.

          故選:C

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設備現(xiàn)有AB兩種型號的設備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2A型設備比購買3B型設備少6萬元.

          A

          B

          價格萬元

          a

          b

          處理污水量

          240

          200

          a,b的值;

          治污公司經(jīng)預算購買污水處理設備的資金不超過105萬元,你認為該公司有哪幾種購買方案;

          的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ABCADC都是邊長相等的等邊三角形,點E、F同時分別從點B、A出發(fā),各自沿BA、AD方向運動到點A、D停止,運動的速度相同,連接ECFC

          1)在點E、F運動過程中∠ECF的大小是否隨之變化?請說明理由;

          2)在點EF運動過程中,以點A、EC、F為頂點的四邊形的面積變化了嗎?請說明理由;

          3)連接EF,在圖中找出和∠ACE相等的所有角,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】兩個工程隊共同參與一項筑路工程,甲隊單獨施工3個月,這時增加了乙隊,兩隊又共同工作了2個月,總工程全部完成,已知甲隊單獨完成全部工程比乙隊單獨完成全部工程多用2個月,設甲隊單獨完成全部工程需個月,則根據(jù)題意可列方程中錯誤的是(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在四邊形中,,是對角線,于點,于點

          (1)如圖1,求證:

          (2)如圖2,當時,連接,在不添加任何輔助線的情況下,請直接寫出圖2中的四個三角形,使寫出的每個三角形的面積都等于四邊形面積的

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,二次函數(shù)的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸相交于C點

          (1)求m的值及C點坐標;

          (2)在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構(gòu)成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由;

          (3)P為拋物線上一點,它關于直線BC的對稱點為Q

          ①當四邊形PBQC為菱形時,求點P的坐標;

          ②點P的橫坐標為t(0t4),當t為何值時,四邊形PBQC的面積最大,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】填空:把下面的推理過程補充完整,并在括號內(nèi)注明理由,

          如圖,已知ABC中,EF分別是AB、AC上的兩點,且EFBC,DEF上一點,且BD=CDED=FD,請說明BE=CF

          解:∵BD=CD(已知)

          ∴∠DBC=DCB______

          EFBC(已知)

          ∴∠EDB=DBC

          FDC=____________

          ∴∠EDB=FDC(等量代換)

          EBDFCD中,

          ∴△EBD≌△FCD______

          BE=CF______

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:拋物線經(jīng)過坐標原點,且當, yx的增大而減小.

          1)求拋物線的解析式;

          2如下圖,設點A是該拋物線上位于x軸下方的一個動點,過點Ax軸的平行線交拋物線于另一點D,再作ABx軸于點B, DCx軸于點C.

          ①當 BC=1時,直接寫出矩形ABCD的周長;

          ②設動點A的坐標為(a, b,將矩形ABCD的周長L表示為a的函數(shù),并寫出自變量的取值范圍,判斷周長是否存在最大值,如果存在,求出這個最大值,并求出此時點A的坐標;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,已知拋物線y=x2+2x﹣3x軸相交于A,B兩點,與y軸交于點C,D為頂點.

          1)求直線AC的解析式和頂點D的坐標;

          2)已知E0, ),點P是直線AC下方的拋物線上一動點,作PRAC于點R,當PR最大時,有一條長為的線段MN(點M在點N的左側(cè))在直線BE上移動,首尾順次連接AM、N、P構(gòu)成四邊形AMNP,請求出四邊形AMNP的周長最小時點N的坐標;

          3)如圖2,過點DDFy軸交直線AC于點F,連接ADQ點是線段AD上一動點,將DFQ沿直線FQ折疊至D1FQ,是否存在點Q使得D1FQAFQ重疊部分的圖形是直角三角形?若存在,請求出AQ的長;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案