日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在四邊形中,,是對角線,于點(diǎn),于點(diǎn)

          (1)如圖1,求證:

          (2)如圖2,當(dāng)時,連接、,在不添加任何輔助線的情況下,請直接寫出圖2中的四個三角形,使寫出的每個三角形的面積都等于四邊形面積的

          【答案】1)詳見解析;(2

          【解析】

          1)根據(jù)平行線的性質(zhì)可得,然后根據(jù)AAS即可證得結(jié)論;

          2)由已知條件、直角三角形的性質(zhì)和平行線的性質(zhì)可依次得出∠BAE=30°,∠ABE60°,∠ADB30°,然后利用30°角的直角三角形的性質(zhì)可得BEAB,AEAD的關(guān)系,進(jìn)而可得△ABE的面積=四邊形ABCD的面積,即得△CDF的面積與四邊形ABCD的面積的關(guān)系;作EGBCG,由直角三角形的性質(zhì)得出EGAB的關(guān)系,進(jìn)而可得△BCE的面積=四邊形ABCD的面積,同理可得△ADF的面積與四邊形ABCD的面積的關(guān)系,問題即得解決.

          1)證明:,,

          ,,

          ,

          AAS),

          ;

          2)△ABE的面積=△CDF的面積=△BCE的面積=△ADF的面積=四邊形ABCD面積的.理由如下:

          AD=BC,DB=BD,∴ADBCBD,∴四邊形ABCD的面積=2×ABD的面積= AB×AD,

          ,∴∠BAE=30°,

          ∴∠ABE60°,∠ADB30°,

          BEAB,AEAD,

          ∴△ABE的面積=BE×AE×AB×ADAB×AD四邊形ABCD的面積;

          ∵△ABE≌△CDF,∴△CDF的面積═四邊形ABCD的面積;

          EGBCG,如圖所示:∵∠CBD=∠ADB30°,∴EGBE×ABAB,

          ∴△BCE的面積=BC×EGBC×ABBC×AB四邊形ABCD的面積,

          同理:△ADF的面積=矩形ABCD的面積.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】果園要將批水果運(yùn)往某地,打算租用某汽車運(yùn)輸公司的甲、乙兩種貨車.以前兩次租用這兩種貨車的信息如表所示:

          第一次

          第二次

          甲種貨車車輛數(shù)()

          乙種貨車車輛數(shù)()

          累計(jì)貨運(yùn)量()

          1)甲、乙兩種貨車每輛每次可分別運(yùn)水果多少噸?

          2)果園現(xiàn)從該汽車運(yùn)輸公司租用甲、乙兩種貨車共輛,要求一次運(yùn) 送這批水果不少于噸.請你通過計(jì)算,求出果園這次至少租用甲種貨車多少輛?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B坐標(biāo)為(-21).

          1)請?jiān)趫D中畫出將四邊形ABCD關(guān)于y軸對稱后的四邊形ABCD,并直接寫出點(diǎn)AB、CD的坐標(biāo);

          2)求四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面材料:

          小明遇到這樣一個問題:

          如圖1,ABC中,∠A=90°,B=30°,點(diǎn)D,E分別在AB,BC上,且∠CDE=90°.當(dāng)BE=2AD時,圖1中是否存在與CD相等的線段?若存在,請找出并加以證明,若不存在,說明理由.

          小明通過探究發(fā)現(xiàn),過點(diǎn)EAB的垂線EF,垂足為F,能得到一對全等三角形(如圖2),從而將解決問題.

          請回答:

          (1)小明發(fā)現(xiàn)的與CD相等的線段是_____

          (2)證明小明發(fā)現(xiàn)的結(jié)論;

          參考小明思考問題的方法,解決下面的問題:

          3)如圖3,ABC中,AB=AC,BAC=90°,點(diǎn)DBC上,BD=2DC,點(diǎn)EAD上,且∠BEC=135°,求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】AB兩個黑布袋,A布袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字12B 布袋中有三個完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣2和﹣3.小明從A布袋中隨機(jī)取出一個小球,記錄其標(biāo)有的數(shù)字為x,再從B布袋中隨機(jī)取出一個小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)Q的一個坐標(biāo)為(xy).

          1)用列表或畫樹狀圖的方法寫出點(diǎn)Q的所有可能坐標(biāo);

          2)求點(diǎn)Q落在直線y=﹣x﹣1上的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD中,FCD上一點(diǎn),EBF上一點(diǎn),連接AEAC、DE.若AB=AC,AD=AE,∠BAC=DAE=70°AE平分∠BAC,則下列結(jié)論中:①ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個數(shù)有( 。

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】龍人文教用品商店欲購進(jìn)、兩種筆記本,用160元購進(jìn)的種筆記本與用240元購進(jìn)的種筆記本數(shù)量相同,每本種筆記本的進(jìn)價比每本種筆記本的進(jìn)價貴10元.

          (1)、兩種筆記本每本的進(jìn)價分別為多少元?

          (2)若該商店準(zhǔn)備購進(jìn)、兩種筆記本共100本,且購買這兩種筆記本的總價不超過2650元,則至少購進(jìn)種筆記本多少本?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)校準(zhǔn)備購買A、B兩種獎品,獎勵成績優(yōu)異的同學(xué)已知購買1A獎品和1B獎品共需18元;購買30A獎品和20B獎品共需480元.

          (1)A、B兩種獎品的單價分別是多少元?

          (2)如果學(xué)校購買兩種獎品共100件,總費(fèi)用不超過850元,那么最多可以購買A獎品多少件.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一個三位數(shù),如果把它的個位數(shù)字與百位數(shù)字交換位置,那么所得的新數(shù)比原數(shù)小99,且各位數(shù)字之和為14,十位數(shù)字是個位數(shù)字與百位數(shù)字之和.求這個三位數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案