分析 (1)過點(diǎn)O作OC⊥AB于點(diǎn)C,證出△OAB是等邊三角形,繼而求得∠AOB的度數(shù),然后由三角函數(shù)的性質(zhì),求得點(diǎn)O到AB的距離;
(2)證出△ABO是等邊三角形得出∠AOB=60°. 再分兩種情況:點(diǎn)C在優(yōu)弧$\widehat{ACB}$上,則∠BCA=30°;點(diǎn)C在劣弧$\widehat{AB}$上,則∠BCA=$\frac{1}{2}$(360°-∠AOB)=150°;即可得出結(jié)果.
解答 解:(1)過點(diǎn)O作OD⊥AB于點(diǎn)D,連接AO,BO.如圖1所示:
∵OD⊥AB且過圓心,AB=2,
∴AD=$\frac{1}{2}$AB=1,∠ADO=90°,
在Rt△ADO中,∠ADO=90°,AO=2,AD=1,
∴OD=$\sqrt{A{O}^{2}-A{D}^{2}}$=$\sqrt{3}$.
即點(diǎn)O到AB的距離為$\sqrt{3}$.
(2)如圖2所示:
∵AO=BO=2,AB=2,
∴△ABO是等邊三角形,
∴∠AOB=60°.
若點(diǎn)C在優(yōu)弧$\widehat{ACB}$上,則∠BCA=30°;
若點(diǎn)C在劣弧$\widehat{AB}$上,則∠BCA=$\frac{1}{2}$(360°-∠AOB)=150°;
綜上所述:∠BCA的度數(shù)為30°或150°.
點(diǎn)評(píng) 此題考查了垂徑定理、等邊三角形的判定與性質(zhì)、三角函數(shù)、弧長(zhǎng)公式.熟練掌握垂徑定理,證明△OAB是等邊三角形是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
x | 6.17 | 6.18 | 6.19 | 6.20 |
y | -0.03 | -0.01 | 0.02 | 0.04 |
A. | -0.01<x<0.02 | B. | 6.17<x<6.18 | C. | 6.18<x<6.19 | D. | 6.19<x<6.20 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com