日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17.如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,線段AD=6,二次函數(shù)y=-$\frac{1}{2}$x2-$\frac{1}{6}$x+4與y軸交于A點(diǎn),與x軸分別交于B點(diǎn)、E點(diǎn)(B點(diǎn)在E點(diǎn)的左側(cè))
          (1)分別求A、B、E點(diǎn)的坐標(biāo);
          (2)連接AE、OD,請(qǐng)判斷△AOE與△AOD是否相似并說明理由;
          (3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫出F點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

          分析 (1)分別將x=0和y=0代入可求得A、B、E點(diǎn)的坐標(biāo);
          (2)根據(jù)坐標(biāo)求出AO和OE的長,將兩個(gè)直角三角形對(duì)應(yīng)小直角邊計(jì)算比值為$\frac{3}{2}$,對(duì)應(yīng)大直角邊計(jì)算比值也是$\frac{3}{2}$,所以根據(jù)兩邊對(duì)應(yīng)成比例,且夾角相等,所以兩三角形相似;
          (3)只需要滿足△ACF為等腰三角形,即可找到對(duì)應(yīng)的菱形,所以構(gòu)建△ACF為等腰三角形有四種情況:①以A為圓心畫圓,交直線AB于F1、F2,②作AC的中垂線交直線AB于F3,③以C為圓心,以AC為半徑,畫圓交直線AB于F4,利用勾股定理列式可求得點(diǎn)F的坐標(biāo).

          解答 解:(1)當(dāng)x=0時(shí),y=4,
          ∴A(0,4),
          當(dāng)y=0時(shí),-$\frac{1}{2}$x2-$\frac{1}{6}$x+4=0,
          2x2+x-24=0,
          (x+3)(3x-8)=0,
          x1=-3,x2=$\frac{8}{3}$,
          ∴B(-3,0),E($\frac{8}{3}$,0);
          (2)△AOE與△AOD相似,理由是:
          ∵A(0,4),
          ∴OA=4,
          ∵E($\frac{8}{3}$,0),
          ∴OE=$\frac{8}{3}$,
          ∴$\frac{AO}{OE}$=$\frac{4}{\frac{8}{3}}$=$\frac{3}{2}$,$\frac{AD}{AO}=\frac{6}{4}$=$\frac{3}{2}$,
          ∴$\frac{AO}{OE}=\frac{AD}{AO}$,
          ∵四邊形ABCD是平行四邊形,
          ∴AD∥BC,
          ∵BC⊥AO,
          ∴AD⊥AO,
          ∴∠OAD=∠AOE=90°,
          ∴△AOE∽△DAO,
          (3)如圖2,在Rt△AOC中,AC=4,OC=3,
          ∴AC=5,
          同理AB=5,
          ∴△ABC是等腰三角形,
          ∴當(dāng)F與B重合時(shí),存在A、C、F、M為頂點(diǎn)的四邊形為菱形,
          即F1(-3,0),
          當(dāng)AF2=AB=5時(shí),△AF2C是等腰三角形,存在A、C、F、M為頂點(diǎn)的四邊形為菱形,
          此時(shí)F2與B關(guān)于點(diǎn)A對(duì)稱,
          ∴F2(3,8),
          設(shè)直線AB的解析式為:y=kx+b,
          把A(0,4),B(-3,0)代入得:$\left\{\begin{array}{l}{-3k+b=0}\\{b=4}\end{array}\right.$,
          解得:$\left\{\begin{array}{l}{k=\frac{4}{3}}\\{b=4}\end{array}\right.$,
          ∴直線AB的解析式為:y=$\frac{4}{3}$x+4,
          如圖2,作AC的中垂線l,交直線AB于F3,連接F3C,分別過A、F3作x軸、y軸的平行線,交于H,HF3交x軸于G,
          則AF3=F3C,
          設(shè)F3(x,$\frac{4}{3}$x+4),
          則$A{H}^{2}+{F}_{3}{H}^{2}$=$C{G}^{2}+{F}_{3}{G}^{2}$,
          (-x)2+(4-$\frac{4}{3}$x-4)2=(-$\frac{4}{3}$x-4)2+(-x+3)2,
          x=-$\frac{75}{14}$,
          當(dāng)x=-$\frac{75}{14}$時(shí),y=$\frac{4}{3}$×$(-\frac{75}{14})$+4=-$\frac{22}{7}$,
          ∴F3(-$\frac{75}{14}$,-$\frac{22}{7}$);
          如圖3,以C為圓心,以AC為半徑,畫圓交直線AB于F4,過F4作F4P⊥x軸于P,則AC=F4C,
          設(shè)F4(x,$\frac{4}{3}$x+4),
          則${3}^{2}+{4}^{2}=(\frac{4}{3}x+4)^{2}+(-x+3)^{2}$,
          $\frac{25}{9}{x}^{2}+\frac{14}{3}x$=0,
          25x2+42x=0,
          x(25x+42)=0,
          x1=0(舍),x2=-$\frac{42}{25}$,
          當(dāng)x=-$\frac{42}{25}$時(shí),y=$\frac{44}{25}$,
          ∴F4(-$\frac{42}{25}$,$\frac{44}{25}$),
          綜上所述,F(xiàn)點(diǎn)的坐標(biāo)為:F1(-3,0),F(xiàn)2(3,8),F(xiàn)3(-$\frac{75}{14}$,-$\frac{22}{7}$),F(xiàn)4(-$\frac{42}{25}$,$\frac{44}{25}$).

          點(diǎn)評(píng) 本題是二次函數(shù)的綜合題,考查了二次函數(shù)與兩坐標(biāo)軸的交點(diǎn)、平行四邊形、菱形和等腰三角形的性質(zhì)和判定、相似三角形的性質(zhì)和判定,在構(gòu)建等腰三角形時(shí),分三種情況進(jìn)行討論,根據(jù)腰長相等并與勾股定理相結(jié)合列式解決問題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          9.在下列各組數(shù)據(jù)中,不能作為直角三角形的三邊長的是(  )
          A.4,5,6B.6,8,10C.7,24,25D.9,12,15

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          8.如圖,在平面直角系中,點(diǎn)A、B分別在x軸、y軸上,A(8,0),B(0,6),點(diǎn)P從點(diǎn)B出發(fā),沿BA以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā),沿AO以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)O時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t秒.
          (1)連接PQ,過點(diǎn)Q作QC⊥AO交AB于點(diǎn)C,用含t的代數(shù)式表示C點(diǎn)坐標(biāo);
          (2)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),△CPQ為等腰三角形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          5.如圖,已知線段AB=16cm,點(diǎn)M在AB上,AM:BM=1:3,P,Q分別為AM,AB的中點(diǎn),則PQ的長為6cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          12.計(jì)算:
          (1)(-$\frac{4}{9}$$+\frac{5}{6}$$-\frac{3}{4}$)×(-36)
          (2)-52+2×(-3)2+(-6)+($-\frac{1}{2}$)2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          2.已知:如圖,∠1+∠D=90°,BE∥FC,且DF⊥BE與點(diǎn)G,并分別與AB、CD交于點(diǎn)F、D.求證:AB∥CD.(完成證明并寫出推理依據(jù))
          證明:∵DF⊥BE(已知),
          ∴∠2+∠D=90°(三角形內(nèi)角和定理),
          ∵∠1+∠D=90°(已知),
          ∴∠1=∠2(等量代換),
          ∵BE∥CF(已知),
          ∴∠2=∠C(兩直線平行,同位角相等),
          ∴∠1=∠C(等量代換),
          ∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線平行).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          9.已知|a|=3,b2=16,且|a+b|≠a+b,則代數(shù)式a-b的值為( 。
          A.1或7B.1或-7C.-1或-7D.±1或±7

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          6.(1)計(jì)算:5+(-2)×(+3)-(-4÷$\frac{1}{2}$).
          (2)計(jì)算:(-2)3-(1+0.5)×[2-(-4)2].

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          7.如圖:求作一點(diǎn)P,使PM=PN,并且使點(diǎn)P到∠AOB的兩邊的距離相等.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案