年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
定義新運(yùn)算:對(duì)于任意實(shí)數(shù)a,b(其中a≠0),都有a⊗b=,等式右邊是通常的加法、減法及除法運(yùn)算,比如:2⊗1=
=0
(1)求5⊗4的值;
(2)若x⊗2=1(其中x≠0),求x的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列各式中,不能用平方差公式計(jì)算的是( 。
A.(﹣x﹣y)(x﹣y) B.(﹣x+y)(﹣x﹣y) C.(x+y)(﹣x+y) D.(x﹣y)(﹣x+y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
.?dāng)?shù)學(xué)活動(dòng)課上,老師提出這樣一個(gè)問題:如果AB=BC,∠ABC=60°,∠APC=30°,連接PB,那么PA、PB、PC之間會(huì)有怎樣的等量關(guān)系呢?經(jīng)過思考后,部分同學(xué)進(jìn)行了如下的交流:
小蕾:我將圖形進(jìn)行了特殊化,讓點(diǎn)P在BA延長(zhǎng)線上(如圖1),得到了一個(gè)猜想:PA2+PC2=PB2.
小東:我假設(shè)點(diǎn)P在∠ABC的內(nèi)部,根據(jù)題目條件,這個(gè)圖形具有“共端點(diǎn)等線段”的特點(diǎn),可以利用旋轉(zhuǎn)解決問題,旋轉(zhuǎn)△PAB后得到△P′CB,并且可推出△PBP′,△PCP′分別是等邊三角形、直角三角形,就能得到猜想和證明方法.
這時(shí)老師對(duì)同學(xué)們說,請(qǐng)大家完成以下問題:
(1)如圖2,點(diǎn)P在∠ABC的內(nèi)部,
①PA=4,PC=,PB= .
②用等式表示PA、PB、PC之間的數(shù)量關(guān)系,并證明.
(2)對(duì)于點(diǎn)P的其他位置,是否始終具有②中的結(jié)論?若是,請(qǐng)證明;若不是,請(qǐng)舉例說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知三角形的面積一定,則它底邊a上的高h(yuǎn)與底邊a之間的函數(shù)關(guān)系的圖象大致是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,某校數(shù)學(xué)興趣小組為測(cè)得大廈AB的高度,在大廈前的平地上選擇一點(diǎn)C,測(cè)得大廈頂端A的仰角為30°,再向大廈方向前進(jìn)80米,到達(dá)點(diǎn)D處(C、D、B三點(diǎn)在同一直線上),又測(cè)得大廈頂端A的仰角為45°,請(qǐng)你計(jì)算該大廈的高度.(精確到0.1米,參考數(shù)據(jù):≈1.414,
≈1.732)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com