日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知整數(shù)x同時滿足不等式3x-4≤6x-2和
          2x+1
          3
          -1<
          x-1
          2
          ,并且滿足方程3(x+a)-5a+2=0,求3a2-
          1
          4
          (a-2)3
          的值.
          分析:因為整數(shù)x同時滿足不等式3x-4≤6x-2和
          2x+1
          3
          -1<
          x-1
          2
          ,故可建立起不等式組,求出不等式組的整數(shù)解,代入方程3(x+a)-5a+2=0,求出a的值,再代入方程求出3a2-
          1
          4
          (a-2)3求值即可.
          解答:解:由
          3x-4≤6x-2
          2x+1
          3
          -1<
          x-1
          2
          得,
          -
          2
          3
          ≤x<1,(3分)
          整數(shù)解為x=0,
          ∴3a-5a+2=0解得:a=1;(6分)
          ∴原式=3×1-
          1
          4
          (1-2)3=3
          1
          4
          .(7分)
          點評:此題綜合考查了不等式組和方程的解法,將不等式組的整數(shù)解代入方程3(x+a)-5a+2=0,使關于x的方程轉化為關于a的方程來解答.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          已知下面著名的“勾股定理”:在一個直角三角形中,兩條直角邊的平方之和等于斜邊的平方.
          試問:是否存在同時滿足下列兩個條件的直角三角形?
          (1)三條邊長均是正整數(shù);
          (2)一條直角邊為素數(shù)(也稱質數(shù))p.若存在,請求出另一條直角邊長;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知:如圖,在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c.點E是AC邊上的一個動點(點E與點A、C不重合),點F是AB邊上的一個動點(點F與點A、B不重合),連接EF.
          (1)當a、b滿足a2+b2-16a-12b+100=0,且c是不等式組
          x+2
          4
          ≤x+6
          2x+2
          3
          >x-3
          的最大整數(shù)解時,試說明△ABC的形狀;
          (2)在(1)的條件得到滿足的△ABC中,若EF平分△ABC的周長,設AE=x,y表示△AEF的面積,試寫出y關于x的函數(shù)關系式;
          (3)在(1)的條件得到滿足的△ABC中,是否存在線段EF,將△ABC的周長和面積同時平分?若存在,則求出AE的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          金秋十月,某果樹種植基地種植的柑橘喜獲豐收,第一天銷售量就為1650千克,第二天銷售量為1750千克,且銷售量p(千克)與天數(shù)x(天)(1≤x≤7且x為整數(shù))滿足一次函數(shù)關系.而市場價格q(元/千克)與天數(shù)x(天)之間滿足q=-0.2x+5(1≤x≤7且x為整數(shù)).
          (1)求銷售量p(千克)與天數(shù)x(天)(1≤x≤7且x為整數(shù))之間的函數(shù)關系式;
          (2)第幾天的銷售額最大?并求這個最大值及當天價格和銷售量;
          (3)由于同類產(chǎn)品的大量上市,銷售第二周平均每天的價格在(2)中價格的基礎上下降了8a%(q<a<10),平均每天的銷售量在(2)中銷售量的基礎上上漲了5a%.同時,根據(jù)市場需求,該果園基地在第二周還將4100千克的柑橘深加工,將橘子果肉與冰糖水等按4:6的比例制成橘子罐頭,并按每瓶500克的方式裝瓶出售(制作過程中的損耗忽略不計),已知平均每千克的橘子含0.6千克的果肉.每瓶橘子罐頭的成本為3.5元,按比成本價高20a%的售價出售,該基地第二周將這批橘子罐頭全部售出,第二周該果園基地銷售總額共計143500元,請你參考以下數(shù)據(jù),估算出a的整數(shù)值.(
          6
          ≈2.4
          ,
          8
          ≈2.8
          ,
          174
          ≈13.4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:b是最小的正整數(shù),且a、b滿足(c-5)2+|a+b|=0,請回答問題
          (1)請直接寫出a、b、c的值.a(chǎn)=
          -1
          -1
          ,b=
          1
          1
          ,c=
          5
          5

          (2)a、b、c所對應的點分別為A、B、C,點P為易動點,其對應的數(shù)為x,點P在0到2之間運動時(即0≤x≤2時),請化簡式子:|x+1|-|x-1|+2|x+5|(請寫出化簡過程)

          (3)在(1)(2)的條件下,點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動,假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BC-AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:b是最小的正整數(shù),且a、b滿足(c-5)2+|a+b|=0.
          (1)請求出a、b、c的值;
          (2)a、b、c所對應的點分別為A、B、C,點P為動點,其對應的數(shù)為x,點P在0到2之間運動時(即0≤x≤2時),請化簡式子:|x+1|-|x-1|+2|x+3|;(寫出化簡過程)
          (3)在(1)、(2)的條件下,點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動,假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BC-AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

          查看答案和解析>>

          同步練習冊答案