已知:如圖,在平面直角坐標(biāo)系內(nèi),直線y=
x上有一點(diǎn)A,AD⊥x軸于D,且AD=3,C是x軸上的一點(diǎn),AC⊥AO,長(zhǎng)度等于OD的線段EF在x軸上沿OC方向以1/s的速度向點(diǎn)C運(yùn)動(dòng)(運(yùn)動(dòng)前EF和OD重合,當(dāng)F點(diǎn)與C重合時(shí)停止運(yùn)動(dòng),包括起點(diǎn)、終點(diǎn)),過E,F(xiàn)分別作OC的垂線交直角邊于點(diǎn)P、點(diǎn)Q,連接線段PD,QD,PQ,PQ交線段AD于點(diǎn)M,若設(shè)EF運(yùn)動(dòng)的時(shí)間為t(s).
(1)寫出A點(diǎn)坐標(biāo)
.PE=
(用含t的代數(shù)式表示線段),其中自變量t的取值范圍為
;
(2)是否存在t的值,使得線段PD⊥QD?若存在,請(qǐng)求出相應(yīng)的t的值,若不

存在,請(qǐng)說明理由;
(3)①當(dāng)t=
秒時(shí),線段AM=
;
②求線段AM關(guān)于自變量t的函數(shù)解析式,并求出AM的最大值.