日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 7.老師出示了小黑板上的題后.小華說:過點,小彬說:過點,小明說:,小穎說:拋物線被軸截得的線段長為2.你認為四人的說法中.正確的有 查看更多

           

          題目列表(包括答案和解析)

          同學們,折紙中也有很大的學問呢.張老師出示了以下三個問題,小聰、小明、小慧分別在黑板上進行了板演,請你也解答這個問題:
          在一張長方形ABCD紙片中,AB=25cm,AD=20cm,現(xiàn)將這張紙片按下列圖示方法折疊,請解決下列問題.
          (1)如圖1,折痕為DE,點A的對應點F在CD上,則折痕DE的長為
           

          (2)如圖2,H,G分別為BC,AD的中點,A的對應點F在HG上,折痕為DE,求重疊部分的面積;
          (3)如圖3,在圖2中,把長方形ABCD沿著HG對開,變成兩張長方形紙片,將兩張紙片任意疊合后,發(fā)現(xiàn)重疊部分是一個菱形,顯然,這個菱形的周長最短是40cm,求疊合后周長最大的菱形的周長和面積.
          精英家教網(wǎng)

          查看答案和解析>>

          同學們,折紙中也有很大的學問呢.張老師出示了以下三個問題,小聰、小明、小慧分別在黑板上進行了板演,請你也解答這個問題:
          在一張長方形ABCD紙片中,AB=25cm,AD=20cm,現(xiàn)將這張紙片按下列圖示方法折疊,請解決下列問題.
          (1)如圖1,折痕為DE,點A的對應點F在CD上,則折痕DE的長為______;
          (2)如圖2,H,G分別為BC,AD的中點,A的對應點F在HG上,折痕為DE,求重疊部分的面積;
          (3)如圖3,在圖2中,把長方形ABCD沿著HG對開,變成兩張長方形紙片,將兩張紙片任意疊合后,發(fā)現(xiàn)重疊部分是一個菱形,顯然,這個菱形的周長最短是40cm,求疊合后周長最大的菱形的周長和面積.

          查看答案和解析>>

          9、妙趣角:輔助線
          問題探討實錄片段:
          老師:等腰三角形的兩個底角一定相等嗎?
          同學們異口同聲:一定相等!
          老師:誰能說說理由?[說著,在圖(1)上用符號分別表示了已知“等腰”的條件和“底角為何相等”的疑問.]
          小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
          小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
          小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
          老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過構造一對全等三角形來說明∠B=∠C,所畫的這條線段AD,可以稱它為“輔助線”.
          小強:“輔助線”,可謂名副其實.
          老師:上面大家探討得到:一個三角形中,如果知道兩邊相等,那么可得這兩邊的對角也相等,這可簡述為“等邊對等角”.
          小霞:我想也應該有“等角對等邊”[說著,畫出了圖(5),其中,AB、AC兩邊上的“”無疑也是在征求說理.]
          不一會,爭先恐后的幾位同學在黑板上畫出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

          老師期待的目光顯然是在說:請你通過觀察與思考,對上述3個圖形作一評價…

          查看答案和解析>>

          妙趣角:輔助線
          問題探討實錄片段:
          老師:等腰三角形的兩個底角一定相等嗎?
          同學們異口同聲:一定相等!
          老師:誰能說說理由?[說著,在圖(1)上用符號分別表示了已知“等腰”的條件和“底角為何相等”的疑問.]
          小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
          小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
          小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
          老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過構造一對全等三角形來說明∠B=∠C,所畫的這條線段AD,可以稱它為“輔助線”.
          小強:“輔助線”,可謂名副其實.
          老師:上面大家探討得到:一個三角形中,如果知道兩邊相等,那么可得這兩邊的對角也相等,這可簡述為“等邊對等角”.
          小霞:我想也應該有“等角對等邊”[說著,畫出了圖(5),其中,AB、AC兩邊上的“”無疑也是在征求說理.]
          不一會,爭先恐后的幾位同學在黑板上畫出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

          老師期待的目光顯然是在說:請你通過觀察與思考,對上述3個圖形作一評價…

          查看答案和解析>>

          妙趣角:輔助線
          問題探討實錄片段:
          老師:等腰三角形的兩個底角一定相等嗎?
          同學們異口同聲:一定相等!
          老師:誰能說說理由?[說著,在圖(1)上用符號分別表示了已知“等腰”的條件和“底角為何相等”的疑問.]
          小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
          小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
          小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
          老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過構造一對全等三角形來說明∠B=∠C,所畫的這條線段AD,可以稱它為“輔助線”.
          小強:“輔助線”,可謂名副其實.
          老師:上面大家探討得到:一個三角形中,如果知道兩邊相等,那么可得這兩邊的對角也相等,這可簡述為“等邊對等角”.
          小霞:我想也應該有“等角對等邊”[說著,畫出了圖(5),其中,AB、AC兩邊上的“”無疑也是在征求說理.]
          不一會,爭先恐后的幾位同學在黑板上畫出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

          精英家教網(wǎng)

          老師期待的目光顯然是在說:請你通過觀察與思考,對上述3個圖形作一評價…

          查看答案和解析>>


          同步練習冊答案