日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 妙趣角:輔助線
          問(wèn)題探討實(shí)錄片段:
          老師:等腰三角形的兩個(gè)底角一定相等嗎?
          同學(xué)們異口同聲:一定相等!
          老師:誰(shuí)能說(shuō)說(shuō)理由?[說(shuō)著,在圖(1)上用符號(hào)分別表示了已知“等腰”的條件和“底角為何相等”的疑問(wèn).]
          小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
          小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
          小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
          老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過(guò)構(gòu)造一對(duì)全等三角形來(lái)說(shuō)明∠B=∠C,所畫(huà)的這條線段AD,可以稱它為“輔助線”.
          小強(qiáng):“輔助線”,可謂名副其實(shí).
          老師:上面大家探討得到:一個(gè)三角形中,如果知道兩邊相等,那么可得這兩邊的對(duì)角也相等,這可簡(jiǎn)述為“等邊對(duì)等角”.
          小霞:我想也應(yīng)該有“等角對(duì)等邊”[說(shuō)著,畫(huà)出了圖(5),其中,AB、AC兩邊上的“”無(wú)疑也是在征求說(shuō)理.]
          不一會(huì),爭(zhēng)先恐后的幾位同學(xué)在黑板上畫(huà)出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

          精英家教網(wǎng)

          老師期待的目光顯然是在說(shuō):請(qǐng)你通過(guò)觀察與思考,對(duì)上述3個(gè)圖形作一評(píng)價(jià)…
          圖6中,已知∠B=∠C,∠BAC=∠CAD,根據(jù)AAS證明三角形全等,則AB=AC;
          圖7中,已知∠B=∠C,BD=DC,由于兩條邊一個(gè)角,該角不是夾角,所以此方法不能證AB=AC;
          圖8中,過(guò)點(diǎn)A作AD⊥BC,則根據(jù)直角三角形特有的證明全等的方法HL進(jìn)行證明,AB=AC.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          在一個(gè)三角形中,如果一個(gè)角是另一個(gè)角的2倍,我們稱這種三角形為倍角三角形.如圖1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的對(duì)邊分別記為a,b,c,倍角三角形的三邊a,b,c有什么關(guān)系呢?讓我們一起來(lái)探索.
          精英家教網(wǎng)
          (1)我們先從特殊的倍角三角形入手研究.請(qǐng)你結(jié)合圖形填空:
          三三角形角形 角的已知量
          a
          b
           
          b+c
          a
           
          圖2 ∠A=2∠B=90°     
          圖3 ∠A=2∠B=60°     
          (2)如圖4,對(duì)于一般的倍角△ABC,若∠CAB=2∠CBA,∠CAB、∠CBA、∠C的對(duì)邊分別記為a,b,c,a,b,c,三邊有什么關(guān)系呢?請(qǐng)你作出猜測(cè),并結(jié)合圖4給出的輔助線提示加以證明;
          (3)請(qǐng)你運(yùn)用(2)中的結(jié)論解決下列問(wèn)題:若一個(gè)倍角三角形的兩邊長(zhǎng)為5,6,求第三邊長(zhǎng). (直接寫(xiě)出結(jié)論即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          9、妙趣角:輔助線
          問(wèn)題探討實(shí)錄片段:
          老師:等腰三角形的兩個(gè)底角一定相等嗎?
          同學(xué)們異口同聲:一定相等!
          老師:誰(shuí)能說(shuō)說(shuō)理由?[說(shuō)著,在圖(1)上用符號(hào)分別表示了已知“等腰”的條件和“底角為何相等”的疑問(wèn).]
          小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
          小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
          小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
          老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過(guò)構(gòu)造一對(duì)全等三角形來(lái)說(shuō)明∠B=∠C,所畫(huà)的這條線段AD,可以稱它為“輔助線”.
          小強(qiáng):“輔助線”,可謂名副其實(shí).
          老師:上面大家探討得到:一個(gè)三角形中,如果知道兩邊相等,那么可得這兩邊的對(duì)角也相等,這可簡(jiǎn)述為“等邊對(duì)等角”.
          小霞:我想也應(yīng)該有“等角對(duì)等邊”[說(shuō)著,畫(huà)出了圖(5),其中,AB、AC兩邊上的“”無(wú)疑也是在征求說(shuō)理.]
          不一會(huì),爭(zhēng)先恐后的幾位同學(xué)在黑板上畫(huà)出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

          老師期待的目光顯然是在說(shuō):請(qǐng)你通過(guò)觀察與思考,對(duì)上述3個(gè)圖形作一評(píng)價(jià)…

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          課題:兩個(gè)重疊的正多邊形,其中的一個(gè)繞某一個(gè)頂點(diǎn)旋轉(zhuǎn)所形成的有關(guān)問(wèn)題.
          實(shí)驗(yàn)與論證
          設(shè)旋轉(zhuǎn)角∠A1A0B1=α(α<∠A1A0B1),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如圖所示.

          (1)用含α的式子表示:θ3=
          60°-α
          60°-α
          ,θ4=
          α
          α
          ,θ5=
          36°-α
          36°-α
          ;θ6=
          α
          α
          ,
          (2)圖1中,連接A0H時(shí),在不添加其他輔助線的情況下,直線A0H是否垂直平分線段A2B1?
          答:
          ;請(qǐng)說(shuō)明你的理由;
          歸納與猜想
          設(shè)正n邊形A0A1A2…An-1與正n邊形A0B1B2…Bn-1重合(其中,A1與B1重合),現(xiàn)將正n邊形A0B1B2…Bn-1繞頂點(diǎn)A0逆時(shí)針旋轉(zhuǎn)α(0°<α<
          180°n
          ).
          (3)設(shè)θn與上述“θ3,θ4,…”的意義一樣,請(qǐng)直接寫(xiě)出θn的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          妙趣角:輔助線
          問(wèn)題探討實(shí)錄片段:
          老師:等腰三角形的兩個(gè)底角一定相等嗎?
          同學(xué)們異口同聲:一定相等!
          老師:誰(shuí)能說(shuō)說(shuō)理由?[說(shuō)著,在圖(1)上用符號(hào)分別表示了已知“等腰”的條件和“底角為何相等”的疑問(wèn).]
          小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
          小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
          小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
          老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過(guò)構(gòu)造一對(duì)全等三角形來(lái)說(shuō)明∠B=∠C,所畫(huà)的這條線段AD,可以稱它為“輔助線”.
          小強(qiáng):“輔助線”,可謂名副其實(shí).
          老師:上面大家探討得到:一個(gè)三角形中,如果知道兩邊相等,那么可得這兩邊的對(duì)角也相等,這可簡(jiǎn)述為“等邊對(duì)等角”.
          小霞:我想也應(yīng)該有“等角對(duì)等邊”[說(shuō)著,畫(huà)出了圖(5),其中,AB、AC兩邊上的“”無(wú)疑也是在征求說(shuō)理.]
          不一會(huì),爭(zhēng)先恐后的幾位同學(xué)在黑板上畫(huà)出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

          老師期待的目光顯然是在說(shuō):請(qǐng)你通過(guò)觀察與思考,對(duì)上述3個(gè)圖形作一評(píng)價(jià)…

          查看答案和解析>>

          同步練習(xí)冊(cè)答案