日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A. 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)A.(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
          π3
          )=4
          的距離的最小值是
           

          B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
           

          C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)若關于x的不等式|x+3|-|x+2|≥log2a有解,則實數(shù)a的取值范圍是:
           

          B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內接四邊形,延長AB和DC相交于點P.若
          PB
          PA
          =
          1
          2
          PC
          PD
          =
          1
          3
          ,則
          BC
          AD
          的值為
           

          C.(坐標系與參數(shù)方程選做題)設曲線C的參數(shù)方程為
          x=3+2
          2
          cosθ
          y=-1+2
          2
          sinθ
          (θ為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=
          2
          cosθ-sinθ
          ,則曲線C上到直線l距離為
          2
          的點的個數(shù)為:
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)
          函數(shù)f(x)=x2-x-a2+a+1對于任一實數(shù)x,均有f(x)≥0.則實數(shù)a滿足的條件是
           

          B.(幾何證明選做題)
          如圖,圓O是△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=2
          3
          ,AB=BC=4,則AC的長為
           

          C.(坐標系與參數(shù)方程選做題)
          在極坐標系中,曲線ρ=4cos(θ-
          π
          3
          )
          上任意兩點間的距離的最大值為
           

          查看答案和解析>>

          精英家教網(wǎng)A.不等式
          x-2
          x2+3x+2
          >0
          的解集是
           

          B.如圖,AB是⊙O的直徑,P是AB延長線上的一點,過P作⊙O的切線,切點為CPC=2
          3
          ,若∠CAP=30°,則⊙O的直徑AB=
           

          C.(極坐標系與參數(shù)方程選做題)若圓C:
          x=1+
          2
          cosθ
          y=2+
          2
          sinθ
          (θ為參數(shù))
          與直線x-y+m=0相切,則m=
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
           


          B.(幾何證明選做題)如圖,直線PC與圓O相切于點C,割線PAB經(jīng)過圓心O,
          弦CD⊥AB于點E,PC=4,PB=8,則CE=
           

          C.(坐標系與參數(shù)方程選做題)在極坐標系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
          π
          4
          )=2
          2
          的距離為
           

          查看答案和解析>>

           

          一、選擇題:本大題共12個小題,每小題5分,共60分。

          1―5 BCBAB    6―10 DCCCD    11―12 DB

          二、填空題:本大題共4個小題,每小題4分,共16分。

          13.    14.1:2    15.①②⑤    16.⑤

          20090203

          17.(本小題滿分12分)

              解:(I)共線

             

               ………………3分

              故 …………6分

             (II)

             

                …………12分

          18.(本小題滿分12分)

          解:根據(jù)題意得圖02,其中BC=31千米,BD=20千米,CD=21千米,

          ∠CAB=60˚.設∠ACD = α ,∠CDB = β .

        2. <small id="8hs55"><menuitem id="8hs55"></menuitem></small>

              ,

              .……9分

              在△ACD中,由正弦定理得:

              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>
            1. <sub id="o5kww"></sub>

              19.(本小題滿分12分)

              解:(1)連結OP,∵Q為切點,PQOQ,

              由勾股定理有,

              又由已知

              即: 

              化簡得 …………3分

                 (2)由,得

              …………6分

              故當時,線段PQ長取最小值 …………7分

                 (3)設⊙P的半徑為R,∵⊙P與⊙O有公共點,⊙O的半徑為1,

              即R且R

              故當時,,此時b=―2a+3=

              得半徑最最小值時⊙P的方程為…………12分

              20.(本小題滿分12分)

              解:(I)過G作GM//CD交CC1于M,交D1C于O。

                1. ∵G為DD1的中點,∴O為D1C的中點

                  從而GO

                  故四邊形GFBO為平行四邊形…………3分

                  ∴GF//BO

                  又GF平面BCD1,BO平面BCD1

                  ∴GF//平面BCD1。 …………5分

                     (II)過A作AH⊥DE于H,

                  過H作HN⊥EC于N,連結AN。

                  ∵DC⊥平面ADD1A1,∴CD⊥AH。

                  又∵AH⊥DE,∴AH⊥平面ECD。

                  ∴AH⊥EC。 …………7分

                  又HN⊥EC

                  ∴EC⊥平面AHN。

                  故AN⊥∴∠ANH為二面角A―CE―D的平面角 …………9分

                  在Rt△EAD中,∵AD=AE=1,∴AH=

                  在Rt△EAC中,∵EA=1,AC=

                    …………12分

                  21.(本小題滿分12分)

                  解:(I)

                   

                     (II)

                     (III)令上是增函數(shù)

                  22.(本小題滿分12分)

                  解:(I)

                  單調遞增。 …………2分

                  ,不等式無解;

                  ;

                  ;

                  所以  …………5分

                     (II), …………6分

                                           …………8分

                  因為對一切……10分

                     (III)問題等價于證明,

                  由(1)可知

                                                                     …………12分

                  易得

                  當且僅當成立。

                                                                   …………14分