日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 16. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分13分)  已知二項式 

          (1)求其展開式中第四項的二項式系數(shù);

          (2)求其展開式中第四項的系數(shù) 。

          查看答案和解析>>

          (本小題滿分13分)某廠用甲、乙兩種產(chǎn)品,已知生產(chǎn)1噸A產(chǎn)品,1噸B產(chǎn)品分別需要的甲乙原料數(shù)、可獲得的利潤及該廠現(xiàn)有原料數(shù)如表:

          產(chǎn)品

          所需原料

          A產(chǎn)品(t)

          B產(chǎn)品(t)

          現(xiàn)有原料(t)

          甲(t)

          2

          1

          14

          乙(t)

          1

          3

          18

          利潤(萬元)

          5

          3

           

          (1)在現(xiàn)有原料下,A、B產(chǎn)品應(yīng)各生產(chǎn)多少才能使利潤最大?

          (2)如果1噸B產(chǎn)品的利潤增加到20萬元,原來的最優(yōu)解為何改變?

          (3)如果1噸B產(chǎn)品的利潤減少1萬元,原來的最優(yōu)解為何改變?

          (4)1噸B產(chǎn)品的利潤在什么范圍,原最優(yōu)解才不會改變?

          查看答案和解析>>

           (本小題滿分13分)

          某市物價局調(diào)查了某種治療H1N1流感的常規(guī)藥品在2009年每個月的批發(fā)價格和該藥品在藥店的銷售價格,調(diào)查發(fā)現(xiàn),該藥品的批發(fā)價格按月份以12元/盒為中心價隨某一正弦曲線上下波動,且3月份的批發(fā)價格最高為14元/盒,7月份的批發(fā)價格最低為10元/盒.該藥品在藥店的銷售價格按月份以14元/盒為中心價隨另一正弦曲線上下波動,且5月份的銷售價格最高為16元/盒,9月份的銷售價格最低為12元/盒.

          (Ⅰ)求該藥品每盒的批發(fā)價格f(x)和銷售價格g(x)關(guān)于月份的函數(shù)解析式;

          (Ⅱ)假設(shè)某藥店每月初都購進(jìn)這種藥品p 盒,且當(dāng)月售完,求該藥店在2009年哪些月份是盈利的?說明你的理由.

          查看答案和解析>>

          (本小題滿分13分) 根據(jù)長沙市建設(shè)大河西的規(guī)劃,市旅游局?jǐn)M在咸嘉湖建立西湖生態(tài)文化公園. 如圖,設(shè)計方案中利用湖中半島上建一條長為的觀光帶AB,同時建一條連接觀光帶和湖岸的長為2的觀光游廊BC,且BC與湖岸MN(湖岸可看作是直線)的夾角為60°,BA與BC的夾角為150°,并在湖岸上的D處建一個觀光亭,設(shè)CD=xkm(1<x<4).

          (Ⅰ)用x分別表示tan∠BDC和tan∠ADM;

          (Ⅱ)試確定觀光亭D的位置,使得在觀光亭D處觀賞

          觀光帶AB的視覺效果最佳.

          查看答案和解析>>

           (本小題滿分13分)

          已知橢圓的焦點(diǎn)為F1(-4,0),F(xiàn)2(4,0),過點(diǎn)F2且垂直于軸的直線與橢圓的一個交點(diǎn)為B,且|BF1|+|BF2|=10,設(shè)點(diǎn)A,C為橢圓上不同兩點(diǎn),使得|AF2|,|BF2|,|CF2|成等差數(shù)列.

          (Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ) 求線段AC的中點(diǎn)的橫坐標(biāo);

          (Ⅲ)求線段AC的垂直平分線在y軸上的截距的取值范圍.

          查看答案和解析>>

          2009年4月

          一、選擇題:本大題共10小題,每題5分,共50分.

          1.B    2.A    3.C    4.C    5.B    6.A    7.C    8.A    9.B   10.B

          二、填空題:本大題共5小題,每題5分,共25分.

          11.4                                      12.                                  13.

          14.                                  15.①

          三、解答題:本題共6小題,共75分.

          16.解:(1)  

           

          (2)  

                 

           

           

           

          17.解:(1) 甲隊以二比一獲勝,即前兩場中甲勝1場,第三場甲獲勝,其概率為

          (2) 乙隊以2∶0獲勝的概率為

          乙隊以2∶1獲勝的概率為

          ∴乙隊獲勝的概率為P2=P'2+''2=0.16+0.192=0.352.

          18.解:(1) ∵  函數(shù)是定義在R上的奇函數(shù),

          ∵       ∴ 

          處的切線方程為,

          ∴  ,且, ∴ 

          (2)

          依題意對任意恒成立,   

          對任意恒成立,即對任意恒成立,

          19.解法一:(1) 證明:取中點(diǎn)為,連結(jié),

                         ∵△是等邊三角形, ∴

                         又∵側(cè)面底面,

                         ∴底面

                         ∴在底面上的射影,

                         又∵

                        

                         ∴,  ∴

                          ∴,      ∴

          (2) 取中點(diǎn),連結(jié)、,    

              ∵.    ∴

          又∵,,

          平面,∴

          是二面角的平面角.                  

          ,,

          ,∴,∴,

          ∴二面角的大小為                       

          解法二:證明:(1) 取中點(diǎn)為,中點(diǎn)為,連結(jié),

          ∵△是等邊三角形,∴

          又∵側(cè)面底面,∴底面

          ∴以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系

          如圖,   

          ,△是等邊三角形,

          ,

               ∴

          (2) 設(shè)平面的法向量為

             ∴

          ,則,∴               

          設(shè)平面的法向量為,              

          ,∴

          ,則,∴       

          ,

          ,   ∴二面角的大小為.        

          20.解:(1) 由題意得,  ①, 

          當(dāng)時,,解得,

          當(dāng)時,有  ②,

          ①式減去②式得,

          于是,,,

          因為,所以,

          所以數(shù)列是首項為,公差為的等差數(shù)列,

          所以的通項公式為).

          (2) 設(shè)存在滿足條件的正整數(shù),則,,

          ,,…,,,…,,

          所以,…,均滿足條件,

          它們組成首項為,公差為的等差數(shù)列.……(8分)

          設(shè)共有個滿足條件的正整數(shù),則,解得.(10分)

          所以,中滿足條件的正整數(shù)存在,共有個,的最小值為.(12分)

          21.(Ⅰ)法1:依題意,顯然的斜率存在,可設(shè)直線的方程為

          ,

          整理得 . ①

          設(shè)是方程①的兩個不同的根,

          ,   ②

          ,由是線段的中點(diǎn),得

          ,∴

          解得,代入②得,的取值范圍是(12,+∞).

          于是,直線的方程為,即   

          法2:設(shè),,則有

           

          依題意,,∴

          的中點(diǎn),∴,,從而

          又由在橢圓內(nèi),∴

          的取值范圍是.    

          直線的方程為,即.   

          (2)  ∵垂直平分,∴直線的方程為,即,

          代入橢圓方程,整理得.  ③      

          又設(shè),的中點(diǎn)為,則是方程③的兩根,

          到直線的距離,

          故所求的以線段的中點(diǎn)為圓心且與直線相切的圓的方程為:

           


          同步練習(xí)冊答案