日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由③④消去可解得. 查看更多

           

          題目列表(包括答案和解析)

          已知m>1,直線,橢圓C:、分別為橢圓C的左、右焦點.

          (Ⅰ)當直線過右焦點時,求直線的方程;

          (Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

          【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

          第二問中設(shè),由,消去x,得,

          則由,知<8,且有

          由題意知O為的中點.由可知從而,設(shè)M是GH的中點,則M().

          由題意可知,2|MO|<|GH|,得到范圍

           

          查看答案和解析>>

          設(shè)雙曲線的兩個焦點分別為、,離心率為2.

          (1)求雙曲線的漸近線方程;

          (2)過點能否作出直線,使與雙曲線交于兩點,且,若存在,求出直線方程,若不存在,說明理由.

          【解析】(1)根據(jù)離心率先求出a2的值,然后令雙曲線等于右側(cè)的1為0,解此方程可得雙曲線的漸近線方程.

          (2)設(shè)直線l的方程為,然后直線方程與雙曲線方程聯(lián)立,消去y,得到關(guān)于x的一元二次方程,利用韋達定理表示此條件,得到關(guān)于k的方程,解出k的值,然后驗證判別式是否大于零即可.

           

          查看答案和解析>>

          設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點P的坐標為.由題意,有  ①

          ,得

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點P的坐標為.

          由條件得消去并整理得  ②

          ,,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點P的坐標為.

          由P在橢圓上,有

          因為,,所以,即   ③

          ,得整理得.

          于是,代入③,

          整理得

          解得,

          所以.

           

          查看答案和解析>>


          同步練習冊答案