日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解題要點]:本題的考查內(nèi)容是函數(shù)導(dǎo)數(shù)及性質(zhì).難度稍難.對函數(shù)與函數(shù)的圖象.很多同學(xué)誤以為這兩個圖象是同種類型.是是壓縮到一個周期而已.事實上他們差別很大.這是設(shè)計第一問的目的. ②③兩問是考查導(dǎo)函數(shù)的單調(diào)性.可能有老師會用二次求導(dǎo)來做.但不用二次導(dǎo)數(shù).用常規(guī)方法來判斷單調(diào)性也簡單.按定義一步一步地做.關(guān)鍵是對照定義.易錯點是學(xué)生只根據(jù)與函數(shù)的圖象相似而主觀臆斷. 查看更多

           

          題目列表(包括答案和解析)

          如圖所示,將一矩形花壇ABCD擴(kuò)建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,

          (I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?

          (II)當(dāng)AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.

          (Ⅲ)若AN的長度不少于6米,則當(dāng)AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.

          【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力   第一問要利用相似比得到結(jié)論。

          (I)由SAMPN > 32 得 > 32 ,

          ∵x >2,∴,即(3x-8)(x-8)> 0

          ∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)

          第二問,  

          當(dāng)且僅當(dāng)

          (3)令

          ∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.                

          ∴當(dāng)x=6時y=取得最小值,即SAMPN取得最小值27(平方米).

           

          查看答案和解析>>

          某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售。如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理。

          (Ⅰ)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式。

          (Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

          日需求量n

          14

          15

          16

          17

          18

          19

          20

          頻數(shù)

          10

          20

          16

          16

          15

          13

          10

          (i)假設(shè)花店在這100天內(nèi)每天購進(jìn)17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);

          (ii)若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.

          【命題意圖】本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.

          【解析】(Ⅰ)當(dāng)日需求量時,利潤=85;

          當(dāng)日需求量時,利潤,

          關(guān)于的解析式為

          (Ⅱ)(i)這100天中有10天的日利潤為55元,20天的日利潤為65元,16天的日利潤為75元,54天的日利潤為85元,所以這100天的平均利潤為

          =76.4;

          (ii)利潤不低于75元當(dāng)且僅當(dāng)日需求不少于16枝,故當(dāng)天的利潤不少于75元的概率為

           

          查看答案和解析>>

          已知函數(shù),曲線在點x=1處的切線為,若時,有極值。

          (1)求的值; (2)求上的最大值和最小值。

          【解析】本試題主要考查了導(dǎo)數(shù)的幾何意義的運用,以及運用導(dǎo)數(shù)在研究函數(shù)的極值和最值的問題。體現(xiàn)了導(dǎo)數(shù)的工具性的作用。

           

          查看答案和解析>>

          已知函數(shù),曲線在點x=1處的切線為,若時,有極值。

          (1)求的值; (2)求上的最大值和最小值。

          【解析】本試題主要考查了導(dǎo)數(shù)的幾何意義的運用,以及運用導(dǎo)數(shù)在研究函數(shù)的極值和最值的問題。體現(xiàn)了導(dǎo)數(shù)的工具性的作用。

           

          查看答案和解析>>

          已知函數(shù)

          (I)     討論f(x)的單調(diào)性;

          (II)   設(shè)f(x)有兩個極值點若過兩點的直線I與x軸的交點在曲線上,求α的值。

          【解析】本試題考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一就是三次函數(shù),通過求解導(dǎo)數(shù),求解單調(diào)區(qū)間。另外就是運用極值的概念,求解參數(shù)值的運用。

          【點評】試題分為兩問,題面比較簡單,給出的函數(shù)比較常規(guī),,這一點對于同學(xué)們來說沒有難度但是解決的關(guān)鍵還是要看導(dǎo)數(shù)的符號的實質(zhì)不變,求解單調(diào)區(qū)間。第二問中,運用極值的問題,和直線方程的知識求解交點,得到參數(shù)的值。

          (1)

           

          查看答案和解析>>


          同步練習(xí)冊答案