日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 8.已知函數(shù).則的大小關系為( ) 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)數(shù)學公式,則f(x2+1)與f(x)的大小關系為________.

          查看答案和解析>>

          已知函數(shù)f(x)=x2-cosx,則f(-0.5),f(0),f(0.6)的由大到小關系為
          f(0.6)>f(-0.5)>f(0)
          f(0.6)>f(-0.5)>f(0)

          查看答案和解析>>

          已知函數(shù)fx)、gx)均為(a、b)上的可導函數(shù),在[a、b]上連續(xù)且f′(x)>g′(x),fa)=ga),則當x∈(a、b)時有( 。

          A.fx)>gx

          B.fx)<gx

          C.fx)=gx

          D.大小關系不能確定

          查看答案和解析>>

          已知函數(shù)fx)、gx)均為(a、b)上的可導函數(shù),在[a、b]上連續(xù)且f′(x)>g′(x),fa)=ga),則當x∈(ab)時有( 。

          A.fx)>gx

          B.fx)<gx

          C.fx)=gx

          D.大小關系不能確定

          查看答案和解析>>

          已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

          (Ⅰ)求實數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

          【解析】第一問當時,,則。

          依題意得:,即    解得

          第二問當時,,令,結合導數(shù)和函數(shù)之間的關系得到單調性的判定,得到極值和最值

          第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          (Ⅰ)當時,,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當時,,令

          變化時,的變化情況如下表:

          0

          0

          +

          0

          單調遞減

          極小值

          單調遞增

          極大值

          單調遞減

          ,!上的最大值為2.

          ②當時, .當時, ,最大值為0;

          時, 上單調遞增!最大值為

          綜上,當時,即時,在區(qū)間上的最大值為2;

          時,即時,在區(qū)間上的最大值為。

          (Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時

          代入(*)式得:    即   (**)

           ,則

          上單調遞增,  ∵     ∴,∴的取值范圍是

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

           

          查看答案和解析>>

          一、選擇題      ACCBC  BBCCD

           

          二、填空題:,,,,①②④

           

          18(Ⅰ)由題意“”表示“答完題,第一題答對,第二題答錯;或第一題答對,第二題也答對” 此時概率                 …6分

          (Ⅱ)P()==,    P()==,………9分

          -3

          -1

          1

           

          3

          P()== ,     P()==

          的分布列為 

                                                             12分

            ……14分                                               

          19解:(Ⅰ) 連接于點,連接

          中,分別為中點,

          平面,平面,平面.   …………(6分)

            (Ⅱ) 法一:過,由三垂線定理得,

          故∠為二面角的平面角.    ……………………………………(9分)

           令,則,又,

            在中,,

             解得。

          時,二面角的正弦值為.     ………………(14分)

          法二:設,取中點,連接,

          為坐標原點建立空間直角坐標系,如右圖所示:

          ,

          設平面的法向量為,平面的法向量為,

          則有,,即,,

          ,則,

          ,解得

          即當時,二面角的正弦值為.  …………………(14分)

           

          20.(1)   ;

          (2)軌跡方程為

          (1)當時,軌跡方程為),表示拋物線弧段。

          (2)當時,軌跡方程為,

              A)當表示橢圓弧段;      B)當時表示雙曲線弧段。

          21.   Ⅰ)   …………(2分)

          ,則

          時,;當

          故有極大值…………(4分)

          Ⅱ)∵=a+,x∈(0,e),∈[,+∞

             (1)若a≥-,則≥0,從而f(x)在(0,e)上增函數(shù).

              ∴f(x)max =f(e)=ae+1≥0.不合題意. …………………………………7分

             (2)若a<->0a+>0,即0<x<-

              由a+<0,即-<x≤e.

              ∴f(x)=f(-)=-1+ln(-).

              令-1+ln(-)=-3,則ln(-)=-2.∴-=e,

              即a=-e2. ∵-e2<-,∴a=-e2為所求. ……………………………10分

             Ⅲ)由Ⅰ)結論,=f(1)=-1.∴f(x)=-x+lnx≤-1,從而lnx≤x-1.

              令g(x)=|f(x)|-=x-lnx=x-(1+)lnx-……12分

             (1)當0<x<2時,有g(x)≥x-(1+)(x-1)-=>0.

             (2)當x≥2時,g′(x)=1-[(-)lnx+(1+)?]=

                             =.

              ∴g(x)在[2,+∞上增函數(shù),∴g(x)≥g(2)=

              綜合(1)、(2)知,當x>0時,g(x)>0,即|f(x)|>.

              故原方程沒有實解.                       ………………………………16分

           

          22.證明:(I)

              ①當,                       …………2分

          ②假設,

          時不等式也成立,                                                               …………4分

             (II)由,

                                                                                                        …………5分

             

                          …………7分

                                      …………8分

             (III),

          ,                                             …………10分

          的等比數(shù)列,…………12分

                                             …………14分

           

           


          同步練習冊答案