日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2) 設(shè)與軸交點為.求證:① , ② 若.則. 查看更多

           

          題目列表(包括答案和解析)

          已知曲線C:(m∈R)

          (1)   若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;

          (2)     設(shè)m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。

          【解析】(1)曲線C是焦點在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

          (2)當(dāng)m=4時,曲線C的方程為,點A,B的坐標(biāo)分別為

          ,得

          因為直線與曲線C交于不同的兩點,所以

          設(shè)點M,N的坐標(biāo)分別為,則

          直線BM的方程為,點G的坐標(biāo)為

          因為直線AN和直線AG的斜率分別為

          所以

          ,故A,G,N三點共線。

           

          查看答案和解析>>

          (12分)已知a>0,函數(shù)設(shè)0<,記曲線y=在點處的切線為L,

          ⑴ 求L的方程

          ⑵ 設(shè)L與x軸交點為,證明:①; ②若,則

           

          查看答案和解析>>

          (12分)已知a>0,函數(shù)設(shè)0<,記曲線y=在點處的切線為L,
          ⑴ 求L的方程
          ⑵ 設(shè)L與x軸交點為,證明:①; ②若,則。

          查看答案和解析>>

          選做題:請考生在第22,23,24題中任選一題做答,如果多做,則按所做的第一題記分

          22.(本小題滿分10分)選修4—1幾何證明選講

          如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E,OE交AD于點F。

             (I)求證:DE是⊙O的切線;

             (II)若的值.

           

           

          23.(本小題滿分10分)選修4—2坐標(biāo)系與參數(shù)方程

                  設(shè)直角坐標(biāo)系原點與極坐標(biāo)極點重合, x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為,點F1、F2為其左、右焦點,直線l的參數(shù)方程為

             (I)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

             (II)求曲線C上的動點P到直線l的最大距離。

          24.(本小題滿分10分)選修4—5不等式選講

                  對于任意的實數(shù)恒成立,記實數(shù)M的最大值是m。

             (1)求m的值;

             (2)解不等式

           

          查看答案和解析>>

          選做題:請考生在第22,23,24題中任選一題做答,如果多做,則按所做的第一題記分

          22.(本小題滿分10分)選修4—1幾何證明選講

          如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E,OE交AD于點F。

             (I)求證:DE是⊙O的切線;

             (II)若的值.

           

          23.(本小題滿分10分)選修4—2坐標(biāo)系與參數(shù)方程

                  設(shè)直角坐標(biāo)系原點與極坐標(biāo)極點重合, x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為,點F1、F2為其左、右焦點,直線l的參數(shù)方程為

             (I)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

             (II)求曲線C上的動點P到直線l的最大距離。

          24.(本小題滿分10分)選修4—5不等式選講

                  對于任意的實數(shù)恒成立,記實數(shù)M的最大值是m。

             (1)求m的值;

             (2)解不等式

           

          查看答案和解析>>

          一、ADBAB  CDCBC

          二、11  9   12     13  384    14     15     

          三、解答題

          16.解:(I)

                 又,∴   ……5分

               (II)

             

          17.解:(Ⅰ) 拋擲一次出現(xiàn)的點數(shù)共有6×6 = 36種不同結(jié)果,其中“點數(shù)之和為7”包含了 (1 , 6) , (2 , 5) , (3 , 4) , (4 , 3) , (5 , 2) , (6 , 1)共6個結(jié)果,

          ∴拋擲一次出現(xiàn)的點數(shù)之和為7的概率為 ………………………… 2分

          ξ可取1 , 2 , 3 , 4

          P (ξ=1) =,P (ξ=2) =,P (ξ= 3) =

          P (ξ= 4) =

          ∴ξ的概率分布列為

          ξ

          1

          2

          3

          4

          P

            1. …… 6分

              Eξ= 1×+ 2×+ 3×+ 4×=  …………………………… 8分

              (Ⅱ) 不限制兩人拋擲的次數(shù),甲獲勝的概率為:

               P =+ ()2×+ ()4×+ … = .      ………… 12分

               

              18.解:解:(1)它是有一條側(cè)棱垂直于底面的四棱錐      … 3分

              (注:評分注意實線、虛線;垂直關(guān)系;長度比例等)

              (2)由(1)得,6ec8aac122bd4f6e,6ec8aac122bd4f6e,得6ec8aac122bd4f6e

              6ec8aac122bd4f6e6ec8aac122bd4f6e,而6ec8aac122bd4f6e,6ec8aac122bd4f6e

              6ec8aac122bd4f6e…………6分

              6ec8aac122bd4f6e

              6ec8aac122bd4f6e………8分

              又在6ec8aac122bd4f6e中,6ec8aac122bd4f6e,故6ec8aac122bd4f6e

              ∴二面角6ec8aac122bd4f6e的平面角為6ec8aac122bd4f6e… ………8分

              (3)解略。 

              19.(I)證明:   ∵  ∴   ∵

              是首項為2,公差為1的等差數(shù)列.       …………3分

              (II)解:=,     …6分

                =.   …7分

              (III)證明: ,

              .       …… 9分

                  .…………12分

              20.解(Ⅰ)∵6ec8aac122bd4f6e過(0,0)    則6ec8aac122bd4f6e

              ∴∠OCA=90°,  即6ec8aac122bd4f6e  又∵6ec8aac122bd4f6e

              將C點坐標(biāo)代入得  6ec8aac122bd4f6e   解得  c2=8,b2=4

              ∴橢圓m:6ec8aac122bd4f6e  …………5分

              (Ⅱ)由條件D(0,-2)  ∵M(jìn)(0,t)

              1°當(dāng)k=0時,顯然-2<t<2  …………6分

              2°當(dāng)k≠0時,設(shè)6ec8aac122bd4f6e

              6ec8aac122bd4f6e   消y得  6ec8aac122bd4f6e  

              由△>0  可得  6ec8aac122bd4f6e   ①

              設(shè)6ec8aac122bd4f6e

              6ec8aac122bd4f6e     6ec8aac122bd4f6e   

              6ec8aac122bd4f6e           …………10分

              6ec8aac122bd4f6e 

              6ec8aac122bd4f6e   ②

              ∴t>1  將①代入②得   1<t<4

              ∴t的范圍是(1,4)。綜上t∈(-2,4)  ………………13分

               

              21.解: (1) 依題知,得:,的方程為,

               即直線的方程是 ………………… 6分

              (2)  證明:由(1)得

              ①由于  ,所以,

              ,所以

              ②因為  ,

              ,所以,即。

              ,所以

              故當(dāng)時,有………………… 14分

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>