日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 點(diǎn)評(píng):第一問(wèn)論證不嚴(yán)謹(jǐn).忽視公比大于0和.等比數(shù)列的一個(gè)突出特點(diǎn)是其中不能出現(xiàn)數(shù)值為的項(xiàng).公比當(dāng)然也不能是0.這一點(diǎn)要注意,第二問(wèn)中式子復(fù)雜.在式子的變形中少有疏忽就會(huì)前功盡棄.考生在解決這樣的考題時(shí).一定要一步一步的演算.達(dá)到“心細(xì)如發(fā) 的境界.才能有效地避免出錯(cuò).考點(diǎn)三:簡(jiǎn)單的遞推數(shù)列 查看更多

           

          題目列表(包括答案和解析)

          設(shè)函數(shù)

          (Ⅰ) 當(dāng)時(shí),求的單調(diào)區(qū)間;

          (Ⅱ) 若上的最大值為,求的值.

          【解析】第一問(wèn)中利用函數(shù)的定義域?yàn)椋?,2),.

          當(dāng)a=1時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

          第二問(wèn)中,利用當(dāng)時(shí), >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

          解:函數(shù)的定義域?yàn)椋?,2),.

          (1)當(dāng)時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

          (2)當(dāng)時(shí), >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

           

          查看答案和解析>>

          已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

          【解析】第一問(wèn)利用的定義域是     

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

          第二問(wèn)中,若對(duì)任意不等式恒成立,問(wèn)題等價(jià)于只需研究最值即可。

          解: (I)的定義域是     ......1分

                        ............. 2分

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

          (II)若對(duì)任意不等式恒成立,

          問(wèn)題等價(jià)于,                   .........5分

          由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

          故也是最小值點(diǎn),所以;            ............6分

          當(dāng)b<1時(shí),;

          當(dāng)時(shí),;

          當(dāng)b>2時(shí),;             ............8分

          問(wèn)題等價(jià)于 ........11分

          解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

           

          查看答案和解析>>

          已知函數(shù)其中為自然對(duì)數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對(duì)于任意的,都有成立,求的取值范圍.

          【解析】第一問(wèn)中,當(dāng)時(shí),,.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。

          第二問(wèn)中,∵,,      

          ∴原不等式等價(jià)于:,

          , 亦即

          分離參數(shù)的思想求解參數(shù)的范圍

          解:(Ⅰ)當(dāng)時(shí),,

          當(dāng)上變化時(shí),,的變化情況如下表:

           

           

          1/e

          時(shí),,

          (Ⅱ)∵,      

          ∴原不等式等價(jià)于:,

          , 亦即

          ∴對(duì)于任意的,原不等式恒成立,等價(jià)于對(duì)恒成立,

          ∵對(duì)于任意的時(shí), (當(dāng)且僅當(dāng)時(shí)取等號(hào)).

          ∴只需,即,解之得.

          因此,的取值范圍是

           

          查看答案和解析>>

          已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點(diǎn).

          (Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;

          (Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[

          【解析】第一問(wèn)中因?yàn)橹本經(jīng)過(guò)點(diǎn),0),所以,得.又因?yàn)閙>1,所以,故直線的方程為

          第二問(wèn)中設(shè),由,消去x,得,

          則由,知<8,且有

          由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().

          由題意可知,2|MO|<|GH|,得到范圍

           

          查看答案和解析>>

          已知函f(x)=ex-x (e為自然對(duì)數(shù)的底數(shù)).
          (1)求f(x)的最小值;
          (2)不等式f(x)>ax的解集為P,若M={x|
          12
          ≤x≤2
          }且M∩P≠∅求實(shí)數(shù)a的取值范圍;
          (3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差數(shù)列{an}和首項(xiàng)為f(I)公比大于0的等比數(shù)列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,請(qǐng)求出數(shù)列{an}、{bn}的通項(xiàng)公式.若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

           

          一、選擇題

          1. D

          解析:∵a3+a7+a11=3a7為常數(shù),

          ∴S13==13a7,也是常數(shù).

          2. C

          解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

          ∴S9∶S3==1+q3+q6=1-+(-)2=.

          3.A

          4.D  數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,項(xiàng)數(shù)為故選D。

          5.B

          6. D

          解析:當(dāng)q=1時(shí),Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

          當(dāng)q=-2時(shí),Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

          當(dāng)q=-時(shí),Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

          7.A   僅②不需要分情況討論,即不需要用條件語(yǔ)句

           

          8. D

          9. D

          解析:易知an=

          ∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

          10.A提示:依題意可得.

          11.B,指輸入的數(shù)據(jù).

          12.D 

          (法一)輾轉(zhuǎn)相除法:         

          的最大公約數(shù).

          (法二)更相減損術(shù):

                  

                  ∴的最大公約數(shù).

          二、填空題

          13.

          14.

          當(dāng)時(shí),是正整數(shù)。

          15.

          解析:bn===a1,bn+1=a1,=(常數(shù)).

          16.-6

          三、解答題

          17.解(1)

               

                以3為公比的等比數(shù)列.

           (2)由(1)知,..

                不適合上式,

                 .

          18.解:(1)an=    (2).

          19.解:(1),

          (2)由(1)得,假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

          ,,得

          ∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項(xiàng)都不可能成等比數(shù)列.

          20.解:設(shè)未贈(zèng)禮品時(shí)的銷售量為a0個(gè),而贈(zèng)送禮品價(jià)值n元時(shí)銷售量為an個(gè),

          ,

          又設(shè)銷售利潤(rùn)為數(shù)列

          當(dāng),

          考察的單調(diào)性,

          當(dāng)n=9或10時(shí),最大

          答:禮品價(jià)值為9元或10元時(shí)商品獲得最大利潤(rùn).

           

          21.解析:(1)時(shí),

          兩式相減:

          故有

          。

          數(shù)列為首項(xiàng)公比的等比數(shù)列。

          (2)

          (3)

             ①

             ②

          ①-②得:

          22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

          (2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

          (3),d100=2+3×49=149,∴d1, d2,…d50是首項(xiàng)為149,公差為-3的等差數(shù)列.  

          當(dāng)n≤50時(shí),

          當(dāng)51≤n≤100時(shí),Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                             =3775+(n-50)×2+=

          ∴綜上所述,.

          w.w.w.k.s.5.u.c.o.m

           

           


          同步練習(xí)冊(cè)答案