日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 二面角,,,∠MAB=45º,AB與成30º,則二面角的大小為 查看更多

           

          題目列表(包括答案和解析)

          如圖,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
          (1)求證:BC⊥平面ACFE;
          (2)求二面角A-BF-C的平面角的余弦值;
          (3)若點M在線段EF上運動,設(shè)平MAB與平FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

          查看答案和解析>>

          (2006•石景山區(qū)一模)如圖,三棱錐P-ABC中,
          PA
          AB
          =
          PA
          AC
          =
          AB
          AC
          =0
          PA
          2
          =
          AC
          2
          =4
          AB
          2

          (Ⅰ)求證:AB⊥平面PAC;
          (Ⅱ)若M為線段PC上的點,設(shè)
          |
          PM|
          |PC
          |
          ,問λ為何值時能使直線PC⊥平面MAB;
          (Ⅲ)求二面角C-PB-A的大。

          查看答案和解析>>

          如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AD=2AB=2,M為PD上的點,若PD⊥平面MAB
          (I)求證:M為PD的中點;
          (II)求二面角A-BM-C的大。

          查看答案和解析>>

          如圖,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.
          (I)求證:BC⊥平面ACFE;
          (II)若M為線段EF的中點,設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),求cosθ.

          查看答案和解析>>

          如圖所示,在直三棱柱ABC-A1B1C1中,AB=BC=1,AA1=2,∠ABC=90°,M為棱CC1上的中點.
          (1)求三棱錐C1-MAB的體積;
          (2)求二面角C1-AB-C的平面角.

          查看答案和解析>>


          同步練習(xí)冊答案