日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 則.故 查看更多

           

          題目列表(包括答案和解析)

          如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB

          (Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

           

          【解析】本試題主要考查了立體幾何中的運(yùn)用。

          (1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

          (Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

          AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

          故△ADE為等腰三角形.

          取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

          連接FG,則FG∥EC,F(xiàn)G⊥DE.

          所以,∠AFG是二面角A-DE-C的平面角.

          連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,

          cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

          所以,二面角A-DE-C的大小為120°

           

          查看答案和解析>>

           對(duì)于,將表示為,當(dāng)時(shí),,當(dāng)時(shí),為0或1.記為上述表示中為0的個(gè)數(shù),(例如,:故)則

          (1)   (2)

           

          查看答案和解析>>

          對(duì)于,將表示為,當(dāng)時(shí),,當(dāng)時(shí),為0或1.記為上述表示中為0的個(gè)數(shù),(例如,:故)則
          (1)  (2)

          查看答案和解析>>

          已知,函數(shù)

          (1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

          【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

          對(duì)a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當(dāng)時(shí),  又    

          ∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當(dāng)時(shí)

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時(shí),極大值為,無極小值

          時(shí)  極大值是,極小值是        ----------8分

          (Ⅲ)設(shè),

          對(duì)求導(dǎo),得

              

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實(shí)數(shù)的取值范圍是(,

           

          查看答案和解析>>

          對(duì)于,將表示為,當(dāng)時(shí),,當(dāng)時(shí),為0或1.記為上述表示中為0的個(gè)數(shù),(例如,:故)則
          (1)  (2)

          查看答案和解析>>


          同步練習(xí)冊(cè)答案