日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以當(dāng)≥2時(shí):.即.且也適合.又>0. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對(duì)任意的成立,求實(shí)數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

          ,得

          當(dāng)x變化時(shí),的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

          ,得

          ①當(dāng)時(shí),上恒成立。因此上單調(diào)遞減.從而對(duì)于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時(shí),,對(duì)于,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

          當(dāng)時(shí),

                                

                                

          在(2)中取,得

          從而

          所以有

               

               

               

               

                

          綜上,,

           

          查看答案和解析>>

          若下列方程:,,至少有一個(gè)方程有實(shí)根,試求實(shí)數(shù)的取值范圍.

          解:設(shè)三個(gè)方程均無(wú)實(shí)根,則有

          解得,即

          所以當(dāng)時(shí),三個(gè)方程至少有一個(gè)方程有實(shí)根.

           

          查看答案和解析>>

          已知函數(shù)=.

          (Ⅰ)當(dāng)時(shí),求不等式 ≥3的解集;

          (Ⅱ) 若的解集包含,求的取值范圍.

          【命題意圖】本題主要考查含絕對(duì)值不等式的解法,是簡(jiǎn)單題.

          【解析】(Ⅰ)當(dāng)時(shí),=,

          當(dāng)≤2時(shí),由≥3得,解得≤1;

          當(dāng)2<<3時(shí),≥3,無(wú)解;

          當(dāng)≥3時(shí),由≥3得≥3,解得≥8,

          ≥3的解集為{|≤1或≥8};

          (Ⅱ) ,

          當(dāng)∈[1,2]時(shí),==2,

          ,有條件得,即,

          故滿足條件的的取值范圍為[-3,0]

           

          查看答案和解析>>

          (2013•和平區(qū)二模)已知點(diǎn)A、B分別是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          長(zhǎng)軸的左、右端點(diǎn),點(diǎn)C是橢圓短軸的一個(gè)端點(diǎn),且離心率e=
          2
          2
          .三角形ABC的面積為
          2
          ,動(dòng)直線l:y=kx+m與橢圓于M、N兩點(diǎn).
          (I)求橢圓的方程;
          (II)若橢圓上存在點(diǎn)P,滿足
          OM
          +
          ON
          OP
          (O為坐標(biāo)原點(diǎn)),求λ的取值范圍;
          (III)在(II)的條件下,當(dāng)λ=
          2
          時(shí),求△MNO面積.

          查看答案和解析>>

          設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=λan-1(λ為常數(shù),n=1,2,3,…).
          (I)若a3=a22,求λ的值;
          (II)是否存在實(shí)數(shù)λ,使得數(shù)列{an}是等差數(shù)列?若存在,求出λ的值;若不存在.請(qǐng)說(shuō)明理由
          (III)當(dāng)λ=2時(shí),若數(shù)列{bn}滿足bn+1=an+bn(n=1,2,3,…),且b1=
          3
          2
          ,令cn=
          an
          (an+1) bn
          ,求數(shù)列{cn}的前n項(xiàng)和Tn

          查看答案和解析>>


          同步練習(xí)冊(cè)答案