日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A 5 B 4 C D 查看更多

           

          題目列表(包括答案和解析)

          的值為

          A.5                              B.4                              C.7                              D.0

          查看答案和解析>>

          精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
          π3
          )=4
          的距離的最小值是
           

          B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
           

          C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
           

          查看答案和解析>>

          精英家教網(wǎng)A.選修4-1:幾何證明選講
          銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
          AB
          于點E,連接EC,求∠OEC.
          B.選修4-2:矩陣與變換
          曲線C1=x2+2y2=1在矩陣M=[
          12
          01
          ]的作用下變換為曲線C2,求C2的方程.
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          P為曲線C1
          x=1+cosθ
          y=sinθ
          (θ為參數(shù))上一點,求它到直線C2
          x=1+2t
          y=2
          (t為參數(shù))距離的最小值.
          D.選修4-5:不等式選講
          設(shè)n∈N*,求證:
          C
          1
          n
          +
          C
          2
          N
          +L+
          C
          N
          N
          n(2n-1)

          查看答案和解析>>

          精英家教網(wǎng)A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
          求證:AB2=BE•CD.
          B.已知矩陣M
          2-3
          1-1
          所對應(yīng)的線性變換把點A(x,y)變成點A′(13,5),試求M的逆矩陣及點A的坐標(biāo).
          C.已知圓的極坐標(biāo)方程為:ρ2-4
          2
          ρcos(θ-
          π
          4
          )+6=0

          (1)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
          (2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
          D.解不等式|2x-1|<|x|+1.

          查看答案和解析>>

          精英家教網(wǎng)A.選修4-1:幾何證明選講
          如圖,圓O1與圓O2內(nèi)切于點A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點C ( O1不在AB上).求證:AB:AC為定值.
          B.選修4-2:矩陣與變換
          已知矩陣A=
          11
          21
          ,向量β=
          1
          2
          .求向量
          α
          ,使得A2
          α
          =
          β

          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,求過橢圓
          x=5cosφ
          y=3sinφ
          (φ為參數(shù))的右焦點,且與直線
          x=4-2t
          y=3-t
          (t為參數(shù))平行的直線的普通方程.
          D.選修4-5:不等式選講(本小題滿分10分)
          解不等式:x+|2x-1|<3.

          查看答案和解析>>

          一、選擇題:

          ADBAA    BCCDC

          二、填空題:

          11. ;        12. ;      13

          14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

          三、解答題:

          16.解:(Ⅰ)

                                                                          …………5分

          成等比數(shù)列,知不是最大邊

                                                              …………6分

          (Ⅱ)由余弦定理

          ac=2                                                                                                        …………11分

          =                                                                          …………12分

          17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

          第二天通過檢查的概率為,                  …………………………4分

          由相互獨立事件得兩天全部通過檢查的概率為.        ………………6分

          (Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

          第二天通過而第一天不通過檢查的概率為,      ………………10分

          由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

           

          18.解:方法一

          (Ⅰ)取的中點,連結(jié),由,又,故,所以即為二面角的平面角.

          在△中,,,,

          由余弦定理有

          所以二面角的大小是.                              (6分)

          (Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

          .                              …(12分)

           

          19.解:(Ⅰ)設(shè)

          則   ……①

               ……②

          ∴②-①得  2d2=0,∴d=p=0

                                                      …………6分

          (Ⅱ)當(dāng)an=n時,恒等式為[S(1,n)]2=S(3,n)

          證明:

          相減得:

          相減得:

                                                   ………………………………13分

          20.解:(Ⅰ)∵,∴,

          又∵,∴

          ,

          ∴橢圓的標(biāo)準(zhǔn)方程為.                                      ………(3分)

          當(dāng)的斜率為0時,顯然=0,滿足題意,

          當(dāng)的斜率不為0時,設(shè)方程為,

          代入橢圓方程整理得:

          ,

                    ,

          ,從而

          綜合可知:對于任意的割線,恒有.                ………(8分)

          (Ⅱ),

          即:,

          當(dāng)且僅當(dāng),即(此時適合于的條件)取到等號.

          ∴三角形△ABF面積的最大值是.                 ………………………………(13分)

           

          21.解:(Ⅰ)              ……………………………………………4分

          (Ⅱ)或者……………………………………………8分

          (Ⅲ)略                                        ……………………………………13分

           

           

           

          雅禮中學(xué)08屆高三第八次質(zhì)檢數(shù)學(xué)(文科)試題參考答案

           

          一、選擇題:

          ADBAA    BCCDC

           

          二、填空題:

          11. ;        12. ;      13

          14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

           

          三、解答題:

           

          16.解:(Ⅰ)

                                                                          …………5分

          成等比數(shù)列,知不是最大邊

                                                              …………6分

          (Ⅱ)由余弦定理

          ac=2                                                                                                        …………11分

          =                                                                          …………12分

           

          17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

          第二天通過檢查的概率為,                  …………………………4分

          由相互獨立事件得兩天全部通過檢查的概率為.        ………………6分

          (Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

          第二天通過而第一天不通過檢查的概率為,      ………………10分

          由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

           

           

           

           

           

          18.解:方法一

          (Ⅰ)取的中點,連結(jié),由,又,故,所以即為二面角的平面角.

          在△中,,,

          由余弦定理有

           

          所以二面角的大小是.                              (6分)

          (Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

          .                              …(12分)

           

          19.解:(Ⅰ)設(shè)

          則   ……①

               ……②

          ∴②-①得  2d2=0,∴d=p=0

                                                      …………6分

          (Ⅱ)當(dāng)an=n時,恒等式為[S(1,n)]2=S(3,n)

          證明:

          相減得:

          相減得:

                                                   ………………………………13分

           

          20.解:(Ⅰ)∵,∴,

          又∵,∴

          ,

          ∴橢圓的標(biāo)準(zhǔn)方程為.                                      ………(3分)

          當(dāng)的斜率為0時,顯然=0,滿足題意,

          當(dāng)的斜率不為0時,設(shè)方程為,

          代入橢圓方程整理得:

          ,

                    ,

          ,從而

          綜合可知:對于任意的割線,恒有.                ………(8分)

          (Ⅱ),

          即:

          當(dāng)且僅當(dāng),即(此時適合于的條件)取到等號.

          ∴三角形△ABF面積的最大值是.                 ………………………………(13分)

           

          21.解:(Ⅰ)              ……………………………………………4分

          (Ⅱ)或者……………………………………………8分

          (Ⅲ)略                                        ……………………………………13分


          同步練習(xí)冊答案