日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:(1)因為拋物線的準線的方程為 查看更多

           

          題目列表(包括答案和解析)

          已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          ………………8分

          ………………………9分

          ……………………………10分

              當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當m=-3時,直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          定義:關(guān)于x的不等式|x-A|<B的解集叫A的B鄰域.已知a+b-2的a+b鄰域為區(qū)間(-2,8),其中a、b分別為橢圓
          x2
          a2
          +
          y2
          b2
          =1
          的長半軸和短半軸.若此橢圓的一焦點與拋物線y2=4
          5
          x
          的焦點重合,則橢圓的方程為( 。

          查看答案和解析>>

          定義:關(guān)于x的不等式|x-A|<B的解集叫AB鄰域.

          已知a+b-2a+b鄰域為區(qū)間(-2,8),其中a、b分別為橢圓+=1的長半軸長和短半軸長,若此橢圓的一焦點與拋物線y2=4x的焦點重合,則橢圓的方程為(  )

          (A) +=1 (B) +=1

          (C) +=1 (D) +=1

           

          查看答案和解析>>

          過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.

          (I)試證明兩點的縱坐標之積為定值;

          (II)若點是定直線上的任一點,試探索三條直線的斜率之間的關(guān)系,并給出證明.

          【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

          (1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得 

           (2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之

          設(shè)點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

            

          KAN+KBN=+

          本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

           

          查看答案和解析>>

          已知曲線C:(m∈R)

          (1)   若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;

          (2)     設(shè)m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。

          【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當解得,所以m的取值范圍是

          (2)當m=4時,曲線C的方程為,點A,B的坐標分別為,

          ,得

          因為直線與曲線C交于不同的兩點,所以

          設(shè)點M,N的坐標分別為,則

          直線BM的方程為,點G的坐標為

          因為直線AN和直線AG的斜率分別為

          所以

          ,故A,G,N三點共線。

           

          查看答案和解析>>


          同步練習冊答案