日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 過拋物線的對(duì)稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).

          (I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;

          (II)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.

          【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

          (1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得 

           (2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之

          設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

            

          KAN+KBN=+

          本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

           

          【答案】

          (1)見解析       (2)見解析

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (08年咸陽市二模) 過拋物線的對(duì)稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).

          (1)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;

          (2)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          過拋物線的對(duì)稱軸上一點(diǎn)的直線與拋物線相交于M、N兩點(diǎn),自M、N向直線作垂線,垂足分別為。

          (Ⅰ)當(dāng)時(shí),求證:;

          (Ⅱ)記、 、的面積分別為、,是否存在,使得對(duì)任意的,都有成立。若存在,求出的值;若不存在,說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:浙江省舟山市09-10學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)理 題型:解答題

          過拋物線的對(duì)稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn)

          (1)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;

          (2)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.

           

           

           

           

           

           

           

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年大連市高三高考?jí)狠S考試?yán)砜茢?shù)學(xué)卷 題型:解答題

          過拋物線的對(duì)稱軸上一點(diǎn)的直線與拋物線相交于M、N兩點(diǎn),自M、N向直線作垂線,垂足分別為、。  

          (Ⅰ)當(dāng)時(shí),求證:;

          (Ⅱ)記 、的面積分別為、,是否存在,使得對(duì)任意的,都有成立。若存在,求值;若不在,說明理由。

           

          查看答案和解析>>

          同步練習(xí)冊答案