日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以即點(diǎn)也在上.所以關(guān)于點(diǎn)P對稱 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)

          (1)若函數(shù)的圖象經(jīng)過P(3,4)點(diǎn),求a的值;

          (2)比較大小,并寫出比較過程;

          (3)若,求a的值.

          【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運(yùn)用。第一問中,因為函數(shù)的圖象經(jīng)過P(3,4)點(diǎn),所以,解得,因為,所以.

          (2)問中,對底數(shù)a進(jìn)行分類討論,利用單調(diào)性求解得到。

          (3)中,由知,.,指對數(shù)互化得到,,所以,解得所以, 或 .

          解:⑴∵函數(shù)的圖象經(jīng)過,即.        … 2分

          ,所以.             ………… 4分

          ⑵當(dāng)時,;

          當(dāng)時,. ……………… 6分

          因為,,

          當(dāng)時,上為增函數(shù),∵,∴.

          .當(dāng)時,上為減函數(shù),

          ,∴.即.      …………………… 8分

          ⑶由知,.所以,(或).

          .∴,       … 10分

           或 ,所以, 或 .

           

          查看答案和解析>>

          對于任意的復(fù)數(shù)z=x+yi(x,y∈R),定義運(yùn)算P(z)=x2[cos(yπ)+isin(yπ)].
          (1)集合A={ω|ω=P(z),|z|≤1,Rez,Imz均為整數(shù)},試用列舉法寫出集合A;
          (2)若z=2+yi(y∈R),P(z)為純虛數(shù),求|z|的最小值;
          (3)直線l:y=x-9上是否存在整點(diǎn)(x,y)(坐標(biāo)x,y均為整數(shù)的點(diǎn)),使復(fù)數(shù)z=x+yi經(jīng)運(yùn)算P后,P(z)對應(yīng)的點(diǎn)也在直線l上?若存在,求出所有的點(diǎn);若不存在,請說明理由.

          查看答案和解析>>

          (2005•重慶一模)已知A點(diǎn)是圓x2+y2-2ax+4y-6=0上任一點(diǎn),A點(diǎn)關(guān)于直線x+2y+1=0的對稱點(diǎn)也在圓上,那么實(shí)數(shù)a等于
          3
          3

          查看答案和解析>>

          已知f(x)=
          ax2-x-5,        x<0
          b•2x-cx+3 ,     x≥0
          若x0>0,且點(diǎn)A(x0,f(x0))關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)也在f(x)的圖象上,則稱x0為f(x)的一個“靚點(diǎn)”.
          (1)當(dāng)a=b=c=0時,求f(x)的“靚點(diǎn)”;
          (2)當(dāng)a=0且b=1時,若f(x)在(0,1)上有且只有一個“靚點(diǎn)”,求c的取值范圍;
          (3)當(dāng)c=a+1且b=0時,若f(x)恒有“靚點(diǎn)”,求a的取值范圍.

          查看答案和解析>>

          點(diǎn)A在圓C:x2+y2+ax+4y-5=0上,它關(guān)于直線x+2y-1=0的對稱點(diǎn)也在圓C上,則a等于(  )

          查看答案和解析>>


          同步練習(xí)冊答案