日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由可設直線的方程為.直線的方程為. ------------------7分 查看更多

           

          題目列表(包括答案和解析)

          已知曲線的方程為,過原點作斜率為的直線和曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,如此下去,一般地,過點作斜率為的直線與曲線相交,另一個交點記為,設點).
          (1)指出,并求的關系式();
          (2)求)的通項公式,并指出點列,, ,,  向哪一點無限接近?說明理由;
          (3)令,數列的前項和為,設,求所有可能的乘積的和.

          查看答案和解析>>

          設雙曲線的兩個焦點分別為、,離心率為2.

          (1)求雙曲線的漸近線方程;

          (2)過點能否作出直線,使與雙曲線交于、兩點,且,若存在,求出直線方程,若不存在,說明理由.

          【解析】(1)根據離心率先求出a2的值,然后令雙曲線等于右側的1為0,解此方程可得雙曲線的漸近線方程.

          (2)設直線l的方程為,然后直線方程與雙曲線方程聯立,消去y,得到關于x的一元二次方程,利用韋達定理表示此條件,得到關于k的方程,解出k的值,然后驗證判別式是否大于零即可.

           

          查看答案和解析>>

          已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點.

          (Ⅰ)當直線過右焦點時,求直線的方程;

          (Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[

          【解析】第一問中因為直線經過點,0),所以,得.又因為m>1,所以,故直線的方程為

          第二問中設,由,消去x,得,

          則由,知<8,且有

          由題意知O為的中點.由可知從而,設M是GH的中點,則M().

          由題意可知,2|MO|<|GH|,得到范圍

           

          查看答案和解析>>

          已知曲線的參數方程是是參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線:的極坐標方程是=2,正方形ABCD的頂點都在上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,).

          (Ⅰ)求點A,B,C,D的直角坐標;

           (Ⅱ)設P為上任意一點,求的取值范圍.

          【命題意圖】本題考查了參數方程與極坐標,是容易題型.

          【解析】(Ⅰ)由已知可得,,

          ,,

          即A(1,),B(-,1),C(―1,―),D(,-1),

          (Ⅱ)設,令=,

          ==,

          ,∴的取值范圍是[32,52]

           

          查看答案和解析>>

          已知過點的動直線與拋物線相交于兩點.當直線的斜率是時,

          (1)求拋物線的方程;

          (2)設線段的中垂線在軸上的截距為,求的取值范圍.

          【解析】(1)B,C,當直線的斜率是時,

          的方程為,即                                (1’)

          聯立  得,         (3’)

          由已知  ,                    (4’)

          由韋達定理可得G方程為            (5’)

          (2)設,BC中點坐標為               (6’)

           由       (8’)

              

          BC中垂線為             (10’)

                            (11’)

           

          查看答案和解析>>


          同步練習冊答案