日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 7. , 8. , 查看更多

           

          題目列表(包括答案和解析)

          8個大小相同的球中,有2個黑球,6個白球,現(xiàn)從中任取4個球,記取出白球的個數(shù)為X.
          (1)求X的分布列;
          (2)求P(
          X+1X-1
          -2≥0)

          查看答案和解析>>


          (8分)
          如圖,在四面體中,,點分別是的中點.求證:
          (1)直線;
          (2)平面

          查看答案和解析>>

          .(本題滿分12分)
          甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次.記錄如下:
          甲:82 81 79 78 95 88 93 84  乙:92 95 80 75 83 80 90 85
          (1)畫出甲、乙兩位學(xué)生成績的莖葉圖,指出學(xué)生乙成績的中位數(shù);
          (2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從平均狀況和方差的角度考慮,你認(rèn)為派哪位學(xué)生參加合適?請說明理由;
          (3)若將頻率視為概率,對學(xué)生甲在今后的三次數(shù)學(xué)競賽成績進(jìn)行預(yù)測,記這三次成績中高于80分的次數(shù)為,求的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          . (本題滿分14分,第1小題滿分6分,第2小題滿分8分)

          已知向量,,

          (1)當(dāng)時,求的值;

          (2)求的最大值與最小值.

           

          查看答案和解析>>

          .(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分。

          設(shè)函數(shù),數(shù)列滿足

          ⑴求數(shù)列的通項公式;

          ⑵設(shè),若恒成立,求實數(shù)的取值范圍;

          ⑶是否存在以為首項,公比為的等比數(shù)列,,使得數(shù)列中每一項都是數(shù)列中不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,說明理由。

           

          查看答案和解析>>

          一、填空題:本大題共14小題,每小題5分,計70分.

          1.第二象限  2. 3   3.Π   4.   5. __ 6. 2  7.

          8.   9. 10  10.向右平移  11. 3.5  12.①④   13.  14.①③

          二、解答題:本大題共6小題,計90分.

          15.解:(1)

          ,,即

          (2),,

          ,

          ,即的取值范圍是

          16.(Ⅰ)證明:連結(jié)AF,在矩形ABCD中,因為AD=4,AB=2,點F是BC的中點,所以∠AFB=∠DFC=45°.所以∠AFD=90°,即AF⊥FD.又PA⊥平面ABCD,所以PA⊥FD.  

          所以FD⊥平面PAF.  故PF⊥FD. 

          (Ⅱ)過E作EH//FD交AD于H,則EH//平面PFD,且 AH=AD.  再過H作HG//PD交PA于G,則GH//平面PFD,且 AG=PA.  所以平面EHG//平面PFD,則EG//平面PFD,從而點G滿足AG=PA. 

          17.解:(1)由于⊙M與∠BOA的兩邊均相切,故M到OA及OB的距離均為⊙M的半

          徑,則M在∠BOA的平分線上,

              同理,N也在∠BOA的平分線上,即O,M,N

          三點共線,且OMN為∠BOA的平分線,

          ∵M(jìn)的坐標(biāo)為,∴M到軸的距離為1,即

          ⊙M的半徑為1,

          則⊙M的方程為,

            設(shè)⊙N的半徑為,其與軸的的切點為C,連接MA、MC,

            由Rt△OAM∽Rt△OCN可知,OM:ON=MA:NC,即

            則OC=,則⊙N的方程為

          (2)由對稱性可知,所求的弦長等于過A點直線MN的平行線被⊙截得的弦

          的長度,此弦的方程是,即:,

          圓心N到該直線的距離d=,則弦長=

          另解:求得B(),再得過B與MN平行的直線方程,圓心N到該直線的距離=,則弦長=

          (也可以直接求A點或B點到直線MN的距離,進(jìn)而求得弦長)

          18.解(1)由題意的中垂線方程分別為

          于是圓心坐標(biāo)為…………………………………4分

          =,即   所以

          于是 ,所以  即 ………………8分

          (2)假設(shè)相切, 則,……………………………………………………10分

          ,………13分這與矛盾.

          故直線不能與圓相切. ………………………………………………16分

          19.解(Ⅰ)∵

                   ∴                               

          ,,令,得,列表如下:

          2

          0

          遞減

          極小值

          遞增

          處取得極小值,

          的最小值為.              

          ,∵,∴,又,∴.                                        

          (Ⅱ)證明由(Ⅰ)知,的最小值是正數(shù),∴對一切,恒有從而當(dāng)時,恒有,故上是增函數(shù).

          (Ⅲ)證明由(Ⅱ)知:上是增函數(shù),

               ∴當(dāng)時,,   又,                     

          ,即,∴

          故當(dāng)時,恒有

          20.解:(1)數(shù)列{an}的前n項和,

          …2分

              …………4分

          是正項等比數(shù)列,,  …………6分

          公比,數(shù)列         …………8分

          (2)解法一:,

                        …………11分

          ,當(dāng),       …………13分

          故存在正整數(shù)M,使得對一切M的最小值為2.…16分

          (2)解法二:,11分

          函數(shù)……13分

          對于

          故存在正整數(shù)M,使得對一切恒成立,M的最小值為2.……16分

           


          同步練習(xí)冊答案