日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A.∥∥∥ 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
          π3
          )=4
          的距離的最小值是
           

          B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
           

          C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實(shí)數(shù)a的取值范圍是:
           

          B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P.若
          PB
          PA
          =
          1
          2
          ,
          PC
          PD
          =
          1
          3
          ,則
          BC
          AD
          的值為
           

          C.(坐標(biāo)系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
          x=3+2
          2
          cosθ
          y=-1+2
          2
          sinθ
          (θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
          2
          cosθ-sinθ
          ,則曲線C上到直線l距離為
          2
          的點(diǎn)的個(gè)數(shù)為:
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)
          函數(shù)f(x)=x2-x-a2+a+1對(duì)于任一實(shí)數(shù)x,均有f(x)≥0.則實(shí)數(shù)a滿足的條件是
           

          B.(幾何證明選做題)
          如圖,圓O是△ABC的外接圓,過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
          3
          ,AB=BC=4,則AC的長(zhǎng)為
           

          C.(坐標(biāo)系與參數(shù)方程選做題)
          在極坐標(biāo)系中,曲線ρ=4cos(θ-
          π
          3
          )
          上任意兩點(diǎn)間的距離的最大值為
           

          查看答案和解析>>

          精英家教網(wǎng)A.不等式
          x-2
          x2+3x+2
          >0
          的解集是
           

          B.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn),過P作⊙O的切線,切點(diǎn)為CPC=2
          3
          ,若∠CAP=30°,則⊙O的直徑AB=
           

          C.(極坐標(biāo)系與參數(shù)方程選做題)若圓C:
          x=1+
          2
          cosθ
          y=2+
          2
          sinθ
          (θ為參數(shù))
          與直線x-y+m=0相切,則m=
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
           


          B.(幾何證明選做題)如圖,直線PC與圓O相切于點(diǎn)C,割線PAB經(jīng)過圓心O,
          弦CD⊥AB于點(diǎn)E,PC=4,PB=8,則CE=
           

          C.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
          π
          4
          )=2
          2
          的距離為
           

          查看答案和解析>>

           

          一、選擇題:本大題共12小題,每小題5分,共60分。

                 AABC    BDDC    DBAB

          二、填空題:本大題共4小題,每小題4分,共16分。

          13.3    14.2    15.    16.①④

          三、解答題:本大題共6小題,共74分。

          17.解:                                                                                1分

          ∴CD⊥AB,∴∠ADC=900。

                 在Rt中,                                                               4分

                                                                                                                            6分

                                                                 7分

                 又∵,∴                  9分

                 ∴=×-×                                                     12分

          18.解:(Ⅰ)當(dāng)時(shí),                                                    1分

                 當(dāng)≥2時(shí),

                         3分

                 ∵是等差數(shù)列,符合≥2時(shí),的形式,

           

                 ∴                                                                 5分

             (Ⅱ)∵,由題意得                                                        7分

          ,解得                                        8分

                 ∴                                                                                                 9分

                 由。

                 ∴,即是首項(xiàng)為2,

                 公比為16的等比數(shù)列                                                                                      11分

                 ∴數(shù)列的前n項(xiàng)和                                   12分

          19.解:設(shè)90-140分之間的人數(shù)是,由130-140分?jǐn)?shù)段的人數(shù)為2人

                 可知0.005×10×=2,得

             (Ⅰ)平均數(shù)95×0.1+105×0.25+115×0.45+125×0.15+135×0.05=113. 4分

                 中位數(shù)=                                                         6分

             (Ⅱ)依題意,第一組共有40×0.01×10=4人,記作;第五組共有2分,記作從第一組和第五組中任意選出兩人共有下列15種選法:{A1,A2}、{A1,A3}、{A1,A4}、{A2,A3}、{A2,A4}、{A3,A4};{A1B1}、{A2,B1}、{A2B2}、

                 {A3,B1}、{A3,B2}、{A4,B1}、{A4,B2}、{A1,B2}、                                     9分

                 設(shè)事件A:選出的兩人為“黃金搭檔組”。若兩人成績(jī)之差大于20,則兩人分別來自于第一組和第五組,共有8中選法,故                                          12分

          20.解:(Ⅰ)空間幾何體的直觀圖如圖所示,

                 且可得到平面ABCD⊥平面ABG,四邊形

                 ABCD為正方形,AG=BG=,

                 故AG⊥BG………………………………4分

             (Ⅱ)∵平面ABCD⊥平面ABG,

                 面ABCD∩平面ABG=AB,CB⊥AB,

                 ∴CB⊥平面ABG,故CB⊥AG………6分

                 又AG⊥BG,∴AG⊥平面BGC。

                 ∴平面AGD⊥平面BGC………………8分

             (Ⅲ)過G作GE⊥AB,垂足為E,則GE⊥平面ABCD

                                      12分

          21.(Ⅰ)依題意,直線顯然不平行于坐標(biāo)軸,故可化為

                 將 代入,消去,得

                                                                ①                     1分

                 由直線與橢圓相交于兩個(gè)不同的點(diǎn),得

                 △=                                                                 2分

                 化簡(jiǎn)整理即得(☆)                                                                 4分

             (Ⅱ)Ax1y1),Bx2,y2),由①,得  ②                     5分

                 因?yàn)?sub>,

                 得                                                                          ③                     6分

                 由②③聯(lián)立,解得                                             ④                     7分

                 △OAB的面積

                 =

          上式取等號(hào)的條件是,

                 即………………9分

                 當(dāng)時(shí),由④解得;當(dāng)時(shí),由④解得。

                 將這兩組值分別代入①,

                 均可解出                                                                                              11分

                 經(jīng)驗(yàn)證,,滿足(☆)式。

                 所以,△OAB的面積取得最大值時(shí)橢圓方程是                          12分

                 注:若未驗(yàn)證(說明)滿足(☆)式,扣1分。

          22.(Ⅰ)由題設(shè)條件,可設(shè)這里                     1分

                 所以         ①

                 又有兩個(gè)相等的實(shí)數(shù)根,而,

                 所以判別式△=,即                              3分

                 解得(舍去),或=-1,代入①式得                    4分

             (Ⅱ)

                 因?yàn)?sub>在區(qū)間內(nèi)單調(diào)遞減,

                 所以當(dāng)時(shí)恒成立                      5分

                 ∵,對(duì)稱軸為直線上為增函數(shù),

                 故只需                                     8分

                 注意到,解得(舍去)。故的取值范圍是        10分

             (Ⅲ)當(dāng)時(shí),方程即為

                 令,得…11分

                 易知上單調(diào)遞增,在上單調(diào)遞減,

                 的極大值的極小值                      13分

                 而使,時(shí),,

                 故函數(shù)的圖象與軸有且只有一個(gè)公共點(diǎn),

                 方程僅有一個(gè)實(shí)數(shù)根                                                               14分

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           


          同步練習(xí)冊(cè)答案