日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (3)若數(shù)列的首項.且.判斷數(shù)列是否為周期數(shù)列.并證明你的結(jié)論 試題答案 查看更多

           

          題目列表(包括答案和解析)

          8、對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N).對自然數(shù)k,規(guī)定{△kan}為{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
          (1)已知數(shù)列{an}的通項公式an=n2+n(n∈N),,試判斷{△an},{△2an}是否為等差或等比數(shù)列,為什么?
          (2)若數(shù)列{an}首項a1=1,且滿足△2an-△an+1+an=-2n(n∈N),求數(shù)列{an}的通項公式.
          (3)(理)對(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an對一切自然n∈N都成立?若存在,求數(shù)列{bn}的通項公式;若不存在,則請說明理由.

          查看答案和解析>>

          對數(shù)列{an},規(guī)定{Van}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中Van=an+1-an(n∈N*).對正整數(shù)k,規(guī)定{Vkan}為{an}的k階差分?jǐn)?shù)列,其中Vkan=Vk-1an+1-Vk-1an=V(VK-1an)(規(guī)定V0an=an).
          (Ⅰ)已知數(shù)列{an}的通項公式an=n2+n(n∈N*),是判斷{Van}是否為等差數(shù)列,并說明理由;
          (Ⅱ)若數(shù)列{an}的首項a1=1,且滿足V2an-Van+1+an=-2n(n∈N*),求數(shù)列{an}的通項公式.

          查看答案和解析>>

          對數(shù)列,規(guī)定為數(shù)列的一階差分?jǐn)?shù)列,其中。 對

          自然數(shù),規(guī)定階差分?jǐn)?shù)列,其中。

          (1)已知數(shù)列的通項公式,試判斷,是否為等差或等比數(shù)列,為什么?

          (2)若數(shù)列首項,且滿足,求數(shù)列的通項公式。

          (3)(理)對(2)中數(shù)列,是否存在等差數(shù)列,使得對一切自然都成立?若存在,求數(shù)列的通項公式;若不存在,則請說明理由。

          查看答案和解析>>

          對數(shù)列,規(guī)定為數(shù)列的一階差分?jǐn)?shù)列,其中, 對自然數(shù),規(guī)定階差分?jǐn)?shù)列,其中

          (1)已知數(shù)列的通項公式,試判斷,是否為等差或等比數(shù)列,為什么?

          (2)若數(shù)列首項,且滿足,求數(shù)列的通項公式。

          (3)對(2)中數(shù)列,是否存在等差數(shù)列,使得對一切自然都成立?若存在,求數(shù)列的通項公式;若不存在,則請說明理由。

           

          查看答案和解析>>

          對數(shù)列,規(guī)定為數(shù)列的一階差分?jǐn)?shù)列,其中, 對自然數(shù),規(guī)定階差分?jǐn)?shù)列,其中
          (1)已知數(shù)列的通項公式,試判斷,是否為等差或等比數(shù)列,為什么?
          (2)若數(shù)列首項,且滿足,求數(shù)列的通項公式。
          (3)對(2)中數(shù)列,是否存在等差數(shù)列,使得對一切自然都成立?若存在,求數(shù)列的通項公式;若不存在,則請說明理由。

          查看答案和解析>>


          同步練習(xí)冊答案