日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由公式.求得.. -------------9分 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.

          (1)求函數(shù)f(x)的表達式;

          (2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;

          (3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

          【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

          由f(x)=2x只有一解,即=2x,

          也就是2ax2-2(1+b)x=0(a≠0)只有一解,

          ∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

          (2)an+1=f(an)=(n∈N*),bn-1, ∴,

          ∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=

          bn=b1qn-1n-1n(n∈N*).……………………………9分

          (3)證明:∵anbn=an=1-an=1-,

          ∴a1b1+a2b2+…+anbn+…+<+…+

          =1-<1(n∈N*).

           

          查看答案和解析>>

          某市甲、乙兩校高二級學(xué)生分別有1100人和1000人,為了解兩校全體高二級學(xué)生期末統(tǒng)考的數(shù)學(xué)成績情況,采用分層抽樣方法從這兩所學(xué)校共抽取105名高二學(xué)生的數(shù)學(xué)成績,并得到成績頻數(shù)分布表如下,規(guī)定考試成績在[120,150]為優(yōu)秀.

          甲校:

          分組

          [70,80)

          [80,90)

          [90,100)

          [100,110)

          [110,120)

          [120,130)

          [130,140)

          [140,150)

          頻數(shù)

          2

          3

          10

          15

          15

          x

          3

          1

          乙校:

          分組

          [70,80)

          [80,90)

          [90,100)

          [100,110)

          [110,120)

          [120,130)

          [130,140)

          [140,150)

          頻數(shù)

          1

          2

          9

          8

          10

          10

          y

          3

          (1)求表中x與y的值;

          (2)由以上統(tǒng)計數(shù)據(jù)完成下面2x2列聯(lián)表,問是否有99%的把握認為學(xué)生數(shù)學(xué)成績優(yōu)秀與所在學(xué)校有關(guān)?

          甲校

          乙校

          總計

          優(yōu)秀

          a

          b

          ab

          非優(yōu)秀

          c

          d

          cd

          總計

          ac

          bd

          n

          參考公式:

          P(K2k0)

          0.100

          0.050

          0.025

          0.010

          0.001

          k0

          2.706

          3.841

          5.024

          6.635

          10.828

          查看答案和解析>>

          已知正項數(shù)列的前n項和滿足:

          (1)求數(shù)列的通項和前n項和;

          (2)求數(shù)列的前n項和;

          (3)證明:不等式  對任意的都成立.

          【解析】第一問中,由于所以

          兩式作差,然后得到

          從而得到結(jié)論

          第二問中,利用裂項求和的思想得到結(jié)論。

          第三問中,

                 

          結(jié)合放縮法得到。

          解:(1)∵     ∴

                ∴

                ∴   ∴  ………2分

                又∵正項數(shù)列,∴           ∴ 

          又n=1時,

             ∴數(shù)列是以1為首項,2為公差的等差數(shù)列……………3分

                                       …………………4分

                             …………………5分 

          (2)       …………………6分

              ∴

                                    …………………9分

          (3)

                …………………12分

                  

             ∴不等式  對任意的,都成立.

           

          查看答案和解析>>

          某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段圍成的封閉圖形.花壇設(shè)計周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.

          (1)求關(guān)于的函數(shù)關(guān)系式;
          (2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?

          查看答案和解析>>

          某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段圍成的封閉圖形.花壇設(shè)計周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.

          (1)求關(guān)于的函數(shù)關(guān)系式;
          (2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?

          查看答案和解析>>


          同步練習(xí)冊答案