日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 14已知數(shù)列的前項(xiàng)和比集合的子集個(gè)數(shù)少1.則 . 查看更多

           

          題目列表(包括答案和解析)

          (本題滿分16分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分.

          已知數(shù)列滿足項(xiàng)和為,.

          (1)若數(shù)列滿足,試求數(shù)列前3項(xiàng)的和;

          (2)(理)若數(shù)列滿足,試判斷是否為等比數(shù)列,并說(shuō)明理由;

          (文)若數(shù)列滿足,,求證:是為等比數(shù)列;

          (3)當(dāng)時(shí),對(duì)任意,不等式都成立,求的取值范圍.

           

          查看答案和解析>>

          (本題13分)已知數(shù)列其前項(xiàng)和,滿足,且
          (1)求的值;
          (2)求數(shù)列的通項(xiàng)公式;

          查看答案和解析>>

          (本題13分)已知數(shù)列其前項(xiàng)和,滿足,且。

          (1)求的值;

          (2)求數(shù)列的通項(xiàng)公式;

           

          查看答案和解析>>

          已知數(shù)列滿足項(xiàng)和為,.

          (1)若數(shù)列滿足,試求數(shù)列前3項(xiàng)的和;(4分)

           

          (2)若數(shù)列滿足,試判斷是否為等比數(shù)列,并說(shuō)明理由;(6分)

          (3)當(dāng)時(shí),問(wèn)是否存在,使得,若存在,求出所有的的值;

          若不存在,請(qǐng)說(shuō)明理由.(8分)

           

          查看答案和解析>>

          已知數(shù)列滿足項(xiàng)和為,.

          (1)若數(shù)列滿足,試求數(shù)列前3項(xiàng)的和;(4分)

          (2)(理)若數(shù)列滿足,試判斷是否為等比數(shù)列,并說(shuō)明理由;(6分)

          (3)當(dāng)時(shí),問(wèn)是否存在,使得,若存在,求出所有的的值;

          若不存在,請(qǐng)說(shuō)明理由.(8分)

          查看答案和解析>>

          1.解析:,故選A。

          2.解析:∵

          ,

          故選B。

          3.解析:由,得,此時(shí),所以,,故選C。

          4.解析:顯然,若共線,則共線;若共線,則,即,得,∴共線,∴共線是共線的充要條件,故選C。

          5.解析:設(shè)公差為,由題意得,,解得,故選C。

          6.解析:∵雙曲線的右焦點(diǎn)到一條漸近線的距離等于焦距的,∴,又∵,∴,∴,∴雙曲線的離心率是。故選B.

          7.解析:∵為正實(shí)數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因?yàn)楹瘮?shù)是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

          8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

          9.解析:∵

          ,此函數(shù)的最小值為,故選C。

          10.解析:如圖,∵正三角形的邊長(zhǎng)為,∴,∴,又∵,∴,故選D。

          11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

          12.解析:如圖,①當(dāng)時(shí),圓面被分成2塊,涂色方法有20種;②當(dāng)時(shí),圓面被分成3塊,涂色方法有60種;

          ③當(dāng)時(shí),圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

          13.解析:做出表示的平面區(qū)域如圖,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取得最大值5。

          學(xué)科網(wǎng)(Zxxk.Com)14.解析:∵,∴時(shí),,又時(shí),滿足上式,因此,

          。

          學(xué)科網(wǎng)(Zxxk.Com)15.解析:設(shè)正四面體的棱長(zhǎng)為,連,取的中點(diǎn),連,∵的中點(diǎn),∴,∴或其補(bǔ)角為所成角,∵,,∴,∴,又∵,∴,∴所成角的余弦值為。

          學(xué)科網(wǎng)(Zxxk.Com)16.解析:∵,∴,∵點(diǎn)的準(zhǔn)線與軸的交點(diǎn),由向量的加法法則及拋物線的對(duì)稱性可知,點(diǎn)為拋物線上關(guān)于軸對(duì)稱的兩點(diǎn)且做出圖形如右圖,其中為點(diǎn)到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量的夾角為。

          17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分

          ,,………4分

          (Ⅱ)∵,,∴,∴,………………………6分

          又∵,∴,∴,………………………8分

          !10分

          18.解析:(Ⅰ)∵,∴;……………………理3文4分

          (Ⅱ)∵三科會(huì)考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

          (Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評(píng)為三好學(xué)生的概率為。……………………12分

          (理)∵,,,!9分

          的分布列如下表:

          0

          1

          2

          3

          的數(shù)學(xué)期望!12分

          19.(12分)解析:(Ⅰ)時(shí),

          ,,

              

          得,   ………3分

           

           

          +

          0

          0

          +

          遞增

          極大值

          遞減

          極小值

          遞增

                ………………………6分

          (Ⅱ)在定義域上是增函數(shù),

          對(duì)恒成立,即 

             ………………………9分

          (當(dāng)且僅當(dāng)時(shí),

                         

           ………………………4分

          學(xué)科網(wǎng)(Zxxk.Com)              

          20.解析:(Ⅰ)∵,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴!4分

          (Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分

          ,,∴,又∵平面,∴,∴二面角的正切值的大小為!8分

          (Ⅲ)過(guò)點(diǎn),交于點(diǎn),∵平面,∴在平面內(nèi)的射影,∴與平面所成的角,………………………10分

          學(xué)科網(wǎng)(Zxxk.Com),∴,又∵,∴與平面所成的角相等,∴與平面所成角的正切值為!12分

          解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點(diǎn)的坐標(biāo)分別是,,,∴,,設(shè),∵平面,∴,∴,取,∴,∴。………………………4分

          (Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分

          (Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為!12分

          21.(Ⅰ) 解析:如圖,設(shè)右準(zhǔn)線軸的交點(diǎn)為,過(guò)點(diǎn)分別向軸及右準(zhǔn)線引垂線,∵,∴,又∵,∴,………………………2分

          ,又∵,∴,又∵,解得,∴,∴雙曲線的方程為。………………………4分

          (Ⅱ)聯(lián)立方程組   消得:

          由直線與雙曲線交于不同的兩點(diǎn)得:

            于是 ,且    ………………①………………………6分

          設(shè)、,則

          ……………………9分

          ,所以,解得      ……………②   

          由①和②得    即

          的取值范圍為。………………………12分

          22.(12分)解析:(Ⅰ)∵,∴,∴,∴數(shù)列是等差數(shù)列,………………………2分

          又∵,,∴公差為2,

          ,………………………4分

          (Ⅱ)∵,∴,

          ∴數(shù)列是公比為2的等比數(shù)列,

          ,∴,………………………6分

          (Ⅲ)∵

          ………………………8分

          ………………………10分

          ,∴,又∵,∴………………………12分

           

           


          同步練習(xí)冊(cè)答案