日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 14.已知數(shù)列的前項(xiàng)和比集合的子集個(gè)數(shù)少1.則數(shù)列通項(xiàng)公式是 . 查看更多

           

          題目列表(包括答案和解析)

          給出下列命題:
          ①關(guān)于x的不等式(a-2)x2+(a-2)x+1>0的解集為R的充要條件是2<a<6;
          ②我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{1,3,5,7,9}的“孫集”有26個(gè).
          ③已知f(x)=ax2+bx+c(a≠0),若方程f(x)無(wú)實(shí)數(shù)根,則方程f[f(x)]=x也一定沒(méi)有實(shí)數(shù)根;
          ④若{an}成等比數(shù)列,Sn是前n項(xiàng)和,則S4,S8-S4,S12-S8成等比數(shù)列.
          其中正確命題的序號(hào)是______.

          查看答案和解析>>

          給出下列命題:
          ①關(guān)于x的不等式(a-2)x2+(a-2)x+1>0的解集為R的充要條件是2<a<6;
          ②我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{1,3,5,7,9}的“孫集”有26個(gè).
          ③已知f(x)=ax2+bx+c(a≠0),若方程f(x)無(wú)實(shí)數(shù)根,則方程f[f(x)]=x也一定沒(méi)有實(shí)數(shù)根;
          ④若{an}成等比數(shù)列,Sn是前n項(xiàng)和,則S4,S8-S4,S12-S8成等比數(shù)列.
          其中正確命題的序號(hào)是   

          查看答案和解析>>

          16、給出下列命題:
          ①關(guān)于x的的不等式(a-2)x2+(a-2)x+1>0的解集為R的充要條件是2<a<6;
          ②我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{1,3,5,7,9}的“孫集”有26個(gè).
          ③已知f(x)=ax2+bx+c(a≠0),若方程f(x)無(wú)實(shí)數(shù)根,則方程f[f(x)]=x也一定沒(méi)有實(shí)數(shù)根;
          ④若{an}成等比數(shù)列,Sn是前n項(xiàng)和,則S4,S8-S4,S12-S8成等比數(shù)列.
          其中正確命題的序號(hào)是
          ②③④

          查看答案和解析>>

          命題1)若是偶函數(shù),其定義域是,則在區(qū)間是減函數(shù)。

          2)如果一個(gè)數(shù)列的前n項(xiàng)和則此數(shù)列是等比數(shù)列的充要條件是

          3)曲線過(guò)點(diǎn)(1,3)處的切線方程為: 。

          4)已知集合只有一個(gè)子集。則

          以上四個(gè)命題中,正確命題的序號(hào)是__________

           

          查看答案和解析>>

          命題1)若是偶函數(shù),其定義域是,則在區(qū)間是減函數(shù)。
          2)如果一個(gè)數(shù)列的前n項(xiàng)和則此數(shù)列是等比數(shù)列的充要條件是
          3)曲線過(guò)點(diǎn)(1,3)處的切線方程為: 。
          4)已知集合只有一個(gè)子集。則
          以上四個(gè)命題中,正確命題的序號(hào)是__________

          查看答案和解析>>

          1.解析:,故選A。

          2.解析:抽取回族學(xué)生人數(shù)是,故選B。

          3.解析:由,得,此時(shí),所以,,故選C。

          4.解析:∵,∴,∴,故選C。

          5.解析:設(shè)公差為,由題意得,;,解得,故選C。

          6.解析:∵雙曲線的右焦點(diǎn)到一條漸近線的距離等于焦距的,∴,又∵,∴,∴雙曲線的漸近線方程是,故選D.

          7.解析:∵、為正實(shí)數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因?yàn)楹瘮?shù)是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

          8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

          9.解析:∵

          ,∴此函數(shù)的最小正周期是,故選C。

          10.解析:如圖,∵正三角形的邊長(zhǎng)為,∴,∴,又∵,∴,故選D。

          11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

          12.解析:如圖,①當(dāng)時(shí),圓面被分成2塊,涂色方法有20種;②當(dāng)時(shí),圓面被分成3塊,涂色方法有60種;

          ③當(dāng)時(shí),圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

          13.解析:將代入結(jié)果為,∴時(shí),表示直線右側(cè)區(qū)域,反之,若表示直線右側(cè)區(qū)域,則,∴是充分不必要條件。

          學(xué)科網(wǎng)(Zxxk.Com)14.解析:∵,∴時(shí),,又時(shí),滿足上式,因此,

          學(xué)科網(wǎng)(Zxxk.Com)15.解析:設(shè)正四面體的棱長(zhǎng)為,連,取的中點(diǎn),連,∵的中點(diǎn),∴,∴或其補(bǔ)角為所成角,∵,,∴,∴,又∵,∴,∴所成角的余弦值為

          學(xué)科網(wǎng)(Zxxk.Com)16.解析:∵,∴,∵點(diǎn)的準(zhǔn)線與軸的交點(diǎn),由向量的加法法則及拋物線的對(duì)稱性可知,點(diǎn)為拋物線上關(guān)于軸對(duì)稱的兩點(diǎn)且做出圖形如右圖,其中為點(diǎn)到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量的夾角為。

          17.(10分)解析:(Ⅰ)由正弦定理得,,…2分

          ,,………4分

          (Ⅱ)∵,,∴,∴,………………………6分

          又∵,∴,∴,………………………8分

          !10分

          18.解析:(Ⅰ)∵,∴;……………………理3文4分

          (Ⅱ)∵三科會(huì)考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

          (Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評(píng)為三好學(xué)生的概率為。……………………12分

          19.(12分)解析:(Ⅰ)∵,∴

           ,,……………3分

          (Ⅱ)∵,∴

          ,

          ,∴數(shù)列自第2項(xiàng)起是公比為的等比數(shù)列,………………………6分

          ,………………………8分

          (Ⅲ)∵,∴,………………10分

          !12分

          20.解析:(Ⅰ)∵,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴。………………………4分

          (Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分

          ,,∴,又∵平面,,∴,∴二面角的正切值的大小為!8分

          (Ⅲ)過(guò)點(diǎn),交于點(diǎn),∵平面,∴在平面內(nèi)的射影,∴與平面所成的角,………………………10分

          學(xué)科網(wǎng)(Zxxk.Com),∴,又∵,∴與平面所成的角相等,∴與平面所成角的正切值為!12分

          解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點(diǎn)的坐標(biāo)分別是,,∴,設(shè),∵平面,∴,∴,取,∴,∴!4分

          (Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分

          (Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為!12分

          21.解析:(Ⅰ)設(shè)拋物線方程為,將代入方程得

          所以拋物線方程為!2分

          由題意知橢圓的焦點(diǎn)為、。

          設(shè)橢圓的方程為

          ∵過(guò)點(diǎn),∴,解得,,

          ∴橢圓的方程為!5分

          (Ⅱ)設(shè)的中點(diǎn)為,的方程為:,

          為直徑的圓交兩點(diǎn),中點(diǎn)為。

          設(shè),則

            

          ………………………8分

          ………………………10分

          當(dāng)時(shí),,,

          此時(shí),直線的方程為。………………………12分

          22.(12分)解析:(Ⅰ)∵是偶函數(shù),∴,

          又∵,,………………………2分

          得,,

          時(shí),;時(shí),時(shí),;∴時(shí),函數(shù)取得極大值,時(shí),函數(shù)取得極小值!5分

          (Ⅱ)∵在區(qū)間上為增函數(shù),∴上恒成立,∴

          在區(qū)間上恒成立,………………………7分

          ……………………9分

          又∵=,∵

          ,∴的取值范圍是!12分

           


          同步練習(xí)冊(cè)答案