日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:設(shè)拋物線方程為 查看更多

           

          題目列表(包括答案和解析)

          設(shè)拋物線>0)的焦點為,準線為,上一點,已知以為圓心,為半徑的圓,兩點.
          (Ⅰ)若,的面積為,求的值及圓的方程;
          (Ⅱ)若,,三點在同一條直線上,直線平行,且只有一個公共點,求坐標原點到,距離的比值.
          【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.

          查看答案和解析>>

          設(shè)拋物線>0)的焦點為,準線為,上一點,已知以為圓心,為半徑的圓,兩點.

          (Ⅰ)若,的面積為,求的值及圓的方程;

           (Ⅱ)若,三點在同一條直線上,直線平行,且只有一個公共點,求坐標原點到,距離的比值.

          【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.

          【解析】設(shè)準線軸的焦點為E,圓F的半徑為,

          則|FE|=,=,E是BD的中點,

          (Ⅰ) ∵,∴=,|BD|=,

          設(shè)A(,),根據(jù)拋物線定義得,|FA|=

          的面積為,∴===,解得=2,

          ∴F(0,1),  FA|=,  ∴圓F的方程為:;

          (Ⅱ) 解析1∵,,三點在同一條直線上, ∴是圓的直徑,,

          由拋物線定義知,∴,∴的斜率為或-,

          ∴直線的方程為:,∴原點到直線的距離=

          設(shè)直線的方程為:,代入得,,

          只有一個公共點, ∴=,∴,

          ∴直線的方程為:,∴原點到直線的距離=,

          ∴坐標原點到距離的比值為3.

          解析2由對稱性設(shè),則

                點關(guān)于點對稱得:

               得:,直線

               切點

               直線

          坐標原點到距離的比值為

           

          查看答案和解析>>

          過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.

          (I)試證明兩點的縱坐標之積為定值;

          (II)若點是定直線上的任一點,試探索三條直線的斜率之間的關(guān)系,并給出證明.

          【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

          (1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得 

           (2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之

          設(shè)點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

            

          KAN+KBN=+

          本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

           

          查看答案和解析>>

          已知拋物線C:y2=2px(p>0)上任意一點到焦點F的距離比到y(tǒng)軸的距離大1.
          (1)求拋物線C的方程;
          (2)若過焦點F的直線交拋物線于M、N兩點,M在第一象限,且|MF|=2|NF|,求直線MN的方程;
          (3)求出一個數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個“逆向”問題.
          例如,原來問題是“若正四棱錐底面邊長為4,側(cè)棱長為3,求該正四棱錐的體積”.求出體積
          16
          3
          后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為
          16
          3
          ,求側(cè)棱長”;也可以是“若正四棱錐的體積為
          16
          3
          ,求所有側(cè)面面積之和的最小值”.
          現(xiàn)有正確命題:過點A(-
          p
          2
          ,0)
          的直線交拋物線C:y2=2px(p>0)于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過焦點F.
          試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

          查看答案和解析>>

          已知拋物線C:y2=2px(p>0)上任意一點到焦點F的距離比到y(tǒng)軸的距離大1.
          (1)求拋物線C的方程;
          (2)若過焦點F的直線交拋物線于M、N兩點,M在第一象限,且|MF|=2|NF|,求直線MN的方程;
          (3)求出一個數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個“逆向”問題.
          例如,原來問題是“若正四棱錐底面邊長為4,側(cè)棱長為3,求該正四棱錐的體積”.求出體積數(shù)學(xué)公式后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為數(shù)學(xué)公式,求側(cè)棱長”;也可以是“若正四棱錐的體積為數(shù)學(xué)公式,求所有側(cè)面面積之和的最小值”.
          現(xiàn)有正確命題:過點數(shù)學(xué)公式的直線交拋物線C:y2=2px(p>0)于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過焦點F.
          試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

          查看答案和解析>>


          同步練習(xí)冊答案