日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線C:y2=2px(p>0)上任意一點到焦點F的距離比到y(tǒng)軸的距離大1.
          (1)求拋物線C的方程;
          (2)若過焦點F的直線交拋物線于M、N兩點,M在第一象限,且|MF|=2|NF|,求直線MN的方程;
          (3)求出一個數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個“逆向”問題.
          例如,原來問題是“若正四棱錐底面邊長為4,側(cè)棱長為3,求該正四棱錐的體積”.求出體積
          16
          3
          后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為
          16
          3
          ,求側(cè)棱長”;也可以是“若正四棱錐的體積為
          16
          3
          ,求所有側(cè)面面積之和的最小值”.
          現(xiàn)有正確命題:過點A(-
          p
          2
          ,0)
          的直線交拋物線C:y2=2px(p>0)于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過焦點F.
          試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.
          分析:(1)拋物線上任一點到焦點的距離比到y(tǒng)軸的距離大1,即有到準(zhǔn)線的距離比到y(tǒng)軸的距離大1,所以的
          p
          2
          =1;
          (2)由(1)得到的拋物線方程,可設(shè)出M,N兩點坐標(biāo)即設(shè)N(
          t2
          2p
          ,-t)
          ,則利用|MF|=2|NF|可得到M的坐標(biāo),然后利用M、F、N共線,可得t的值.進而求出直線斜率,利用直線方程的點斜式求出直線方程.
          (3)在前面解答正確的前提下可得到所要求的“逆向”問題,這個“逆向”問題有多個答案,本題的逆向問題是把直線RQ過焦點F作為條件,于是可由把過點A(-
          p
          2
          ,0)
          作為結(jié)論得到,也可以由點P關(guān)于x軸的對稱點為R,RQ垂直x軸作為結(jié)論得到.
          解答:解:(1)由已知及拋物線的定義可得:
          p
          2
          =1,即p=2,所以拋物線C的方程為:y2=4x(4分)
          (2)設(shè)N(
          t2
          4
          ,-t)
          (t>0),則M(t2,2t),F(xiàn)(1,0).
          因為M、F、N共線,則有kFM=kNF,(6分)
          所以
          -t
          1
          4
          t2-1
          =
          2t
          t2-1
          ,解得t=
          2
          ,(8分)
          所以k=
          2
          2
          2-1
          =2
          2
          ,(10分)
          因而,直線MN的方程是y=2
          2
          (x-1)
          .(11分)
          (3)“逆向問題”一:
          ①已知拋物線C:y2=2px(p>0)的焦點為F,過點F的直線交拋物線C于P、Q兩點,
          設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過定點A(-
          p
          2
          ,0)
          .(13分)
          證明:設(shè)過F的直線為y=k(x-
          p
          2
          ),P(x1,y1),Q(x2,y2),則R(x1,-y1
          y2=4x
          y=k(x-
          p
          2
          )
          k2x2-(pk2+4)x+
          1
          4
          p2k2=0
          ,
          所以x1x2=
          p2
          4
          ,(14分)
          kRA=
          -y1
          x1+
          p
          2
          =-
          k(x1-
          p
          2
          )
          x1+
          p
          2
          ,(15分)
          kQA=
          k(x2-
          p
          2
          )
          x2+
          p
          2
          =
          k(x1x2-
          p
          2
          x1)
          x1x2+
          p
          2
          x1
          =-
          k(x1-
          p
          2
          )
          x1+
          p
          2
          =kRA,(16分)
          所以直線RQ必過焦點A.(17分)
          ②過點A(-
          p
          2
          ,0)
          的直線交拋物線C于P、Q兩點,F(xiàn)P與拋物線交于另一點R,則RQ垂直于x軸.
          ③已知拋物線C:y2=2px(p>0),過點B(m,0)(m>0)的直線交拋物線C于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過定點A(-m,0).
          “逆向問題”二:已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          的焦點為F1(-c,0),F(xiàn)2(c,0),
          過F2的直線交橢圓C于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過定點A(
          a2
          c
          ,0)

          “逆向問題”三:已知雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1
          的焦點為F1(-c,0),F(xiàn)2(c,0),
          過F2的直線交雙曲線C于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過定點A(
          a2
          c
          ,0)
          點評:本題考查圓錐曲線--拋物線的概念,幾何性質(zhì)以及應(yīng)用;求曲線的方程,直線與圓錐曲線的位置關(guān)系及應(yīng)用.命題的提出與證明,圓錐曲線與向量等知識交匯點的考查應(yīng)用,同時注意對數(shù)形結(jié)合思想,定義法,設(shè)而不求思想等具體思想方法的考查.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點. A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M(O為坐標(biāo)原點).
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)過M作MN⊥FA,垂足為N,求點N的坐標(biāo);
          (Ⅲ)以M為圓心,4為半徑作圓M,點P(m,0)是x軸上的一個動點,試討論直線AP與圓M的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點,A為拋物線C上的動點,過A作拋物線準(zhǔn)線l的垂線,垂足為Q.
          (1)若點P(0,4)與點F的連線恰好過點A,且∠PQF=90°,求拋物線方程;
          (2)設(shè)點M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=2Px(p>0)上橫坐標(biāo)為4的點到焦點的距離為5.
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
          16(1-kb)k2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=4x,點M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點,O為坐標(biāo)原點.
          (I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
          (II)問是否存在定點M,不論直線l繞點M如何轉(zhuǎn)動,使得
          1
          |AM|2
          +
          1
          |BM|2
          恒為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=8x與點M(-2,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若
          MA
          MB
          =0,則k=( 。

          查看答案和解析>>

          同步練習(xí)冊答案