日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解](Ⅰ)∵.依題意:.∴.-1′ 查看更多

           

          題目列表(包括答案和解析)

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          已知,函數(shù)

          (1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

          【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

          對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當(dāng)時(shí),  又    

          ∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當(dāng)時(shí)

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時(shí),極大值為,無極小值

          時(shí)  極大值是,極小值是        ----------8分

          (Ⅲ)設(shè),

          求導(dǎo),得

          ,    

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實(shí)數(shù)的取值范圍是(,

           

          查看答案和解析>>

          設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

          (1)求正實(shí)數(shù)a的取值范圍;

          (2)比較的大小,說明理由;

          (3)求證:(n∈N*, n≥2)

          【解析】第一問中,利用

          解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

          ∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

          (2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

          ∴n≥2時(shí):f()=

            

           (3)  ∵   ∴

           

          查看答案和解析>>

          山東省《體育高考方案》于2012年2月份公布,方案要求以學(xué)校為單位進(jìn)行體育測試,某校對高三1班同學(xué)按照高考測試項(xiàng)目按百分制進(jìn)行了預(yù)備測試,并對50分以上的成績進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,若90~100分?jǐn)?shù)段的人數(shù)為2人.

          (Ⅰ)請估計(jì)一下這組數(shù)據(jù)的平均數(shù)M;

          (Ⅱ)現(xiàn)根據(jù)初賽成績從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成一個(gè)小組.若選出的兩人成績差大于20,則稱這兩人為“幫扶組”,試求選出的兩人為“幫扶組”的概率.

          【解析】本試題主要考查了概率的運(yùn)算和統(tǒng)計(jì)圖的運(yùn)用。

          (1)由由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05,然后利用平均值公式,可知這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)

          (2)中利用90~100分?jǐn)?shù)段的人數(shù)為2人,頻率為0.05;得到總參賽人數(shù)為40,然后得到0~60分?jǐn)?shù)段的人數(shù)為40×0.1=4人,第五組中有2人,這樣可以得到基本事件空間為15種,然后利用其中兩人成績差大于20的選法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8種,得到概率值

          解:(Ⅰ)由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05; ……………2分

          ∴這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)…4分

          (Ⅱ)∵90~100分?jǐn)?shù)段的人數(shù)為2人,頻率為0.05;

          ∴參加測試的總?cè)藬?shù)為=40人,……………………………………5分

          ∴50~60分?jǐn)?shù)段的人數(shù)為40×0.1=4人, …………………………6分

          設(shè)第一組50~60分?jǐn)?shù)段的同學(xué)為A1,A2,A3,A4;第五組90~100分?jǐn)?shù)段的同學(xué)為B1,B2

          則從中選出兩人的選法有:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15種;其中兩人成績差大于20的選法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8種 …………………………11分

          則選出的兩人為“幫扶組”的概率為

           

          查看答案和解析>>

          現(xiàn)有4個(gè)人去參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

          (Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率;

          (Ⅱ)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;

          (Ⅲ)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

          【解析】依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的概率為.

          設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件

          .

          (1)這4個(gè)人中恰有2人去參加甲游戲的概率

          (2)設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故

          所以,這個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.

          (3)的所有可能取值為0,2,4.由于互斥,互斥,故

              

          所以的分布列是

          0

          2

          4

          P

          隨機(jī)變量的數(shù)學(xué)期望.

           

          查看答案和解析>>


          同步練習(xí)冊答案