日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)定義在[0.1]上.滿足且.在每個(gè)區(qū)間(1.2--)上.的圖象都是平行于x軸的直線的一部分. 查看更多

           

          題目列表(包括答案和解析)

          函數(shù)定義在[0,1]上,滿足,在每個(gè)區(qū)間1,2……)上,的圖象都是平行于x軸的直線的一部分.

              (I)求,的值,并歸納出的表達(dá)式

          (II)設(shè)直線,,x軸及的圖象圍成的矩形的面積為1,2…),求的值.

          查看答案和解析>>

          定義在上的偶函數(shù)滿足,且在[-1,0]上單調(diào)遞增,設(shè),則大小關(guān)系是(      )

            A. a>b>c                B. a>c>b              C. b>c>a          D. c>b>a

           

          查看答案和解析>>

          定義在R上的偶函數(shù)f(x)滿足對(duì)任意x∈R,都有f(x+8)=f(x)+f(4),且x∈[0,4]時(shí)f(x)=4-x,則f(2005)的值為

          A.-1                  B.1              C.-2            D.0

           

          查看答案和解析>>

          定義在上的偶函數(shù)滿足,且在[-1,0]上單調(diào)遞增,設(shè),則大小關(guān)系是(       )

          A.a(chǎn)>b>c B.a(chǎn)>c>b C.b>c>a D.c>b>a

          查看答案和解析>>

          函數(shù)f(x)是定義在[0,1]上的增函數(shù),滿足且f(1)=1,在每個(gè)區(qū)間(i=1,2……)上,y=f(x)的圖象都是斜率為同一常數(shù)k的直線的一部分,
          (Ⅰ)求f(0)及的值,并歸納出的表達(dá)式;
          (Ⅱ)設(shè)直線,x軸及y=f(x)的圖象圍成的矩形的面積為ai(i=1,2……),記,求S(k)的表達(dá)式,并寫出其定義域和最小值。

          查看答案和解析>>

           

          一、 選擇題:本大題主要考查基本知識(shí)和基本運(yùn)算.每小題5分,滿分40分.

          (1)D   (2)C    (3)A   (4)A    (5)B    (6)D   (7)C   (8)B

          二、填空題:本大題主要考查基本知識(shí)和基本運(yùn)算.每小題5分,滿分30分.

          (9)   

          (10)

          (11)(0,1),

          (12)  

          (13)大    -3

          (14)3    52

          三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

          (15)本小題主要考查三角恒等變形、三角形面積公式等基本知識(shí),考查運(yùn)算能力.滿分14分.

              解法一:

             

              又,

             

             

              .

              解法二:

                       (1)

              

              ,

               .   (2)

              (1)+(2)得:.

              (1)-(2)得:.

              .

              (以下同解法一)

          (16)本小題主要考查直線與平面的位置關(guān)系、棱柱等基本知識(shí),考查空間想象能力、邏輯思維能力和運(yùn)算能力.滿分14分.

              解:(I)正三棱柱的側(cè)面展開圖是長(zhǎng)為6,寬為2的矩形

              其對(duì)角線長(zhǎng)為.

              (II)如圖,將側(cè)面繞棱旋轉(zhuǎn)使其與側(cè)面在同一平面上,點(diǎn)B運(yùn)動(dòng)到點(diǎn)D的位置,連接于M,則就是由頂點(diǎn)B沿棱柱側(cè)面經(jīng)過棱到頂點(diǎn)C1的最短路線,其長(zhǎng)為

              .

              ,,

              故.

              (III)連接DB,,則DB就是平面與平面ABC的交線

              在中,

             

              又,

              由三垂線定理得.

              就是平面與平面ABC所成二面角的平面角(銳角),

              側(cè)面是正方形,

              .

              故平面與平面ABC所成的二面角(銳角)為.

           (17)本小題主要考查直線、拋物線等基本知識(shí),考查運(yùn)用解析幾何的方法分析問題和解決問題的能力.滿分14分.

              解:(I)由已知條件,可設(shè)拋物線的方程為.

              點(diǎn)P(1,2)在拋物線上,

              ,得.

              故所求拋物線的方程是,

              準(zhǔn)線方程是.

              (II)設(shè)直線PA的斜率為,直線PB的斜率為,

              則.

              PA與PB的斜率存在且傾斜角互補(bǔ),

              .

              由A(),B()在拋物線上,得

                  ,(1)

              ,     (2)

             

              由(1)-(2)得直線AB的斜率

             

           (18)本小題主要考查函數(shù)、數(shù)列等基本知識(shí),考查分析問題和解決問題的能力.滿分14分.

              解:(I)由,得.

              由,得.

              同理,.

              歸納得

              (II)當(dāng)時(shí),,

              ,

              ,

              .

              所以是首項(xiàng)為,公比為的等比數(shù)列.

              所以.

          (19)本小題主要考查解不等式等基本知識(shí),考查應(yīng)用數(shù)學(xué)知識(shí)分析問題和解決問題的能力.滿分12分.

              解:(I)列車在B,C兩站的運(yùn)行誤差(單位:分鐘)分別是

             

              (II)由于列車在B,C兩站的運(yùn)行誤差之和不超過2分鐘,所以

                  (*)

              當(dāng)時(shí),(*)式變形為,

              解得;

              當(dāng)時(shí),(*)式變形為,

              解得;

              當(dāng)時(shí),(*)式變形為,

              解得

              綜上所述,的取值范圍是[39,].

           (20)本小題主要考查不等式的證明等基本知識(shí),考查邏輯思維能力、分析問題和解決問題的能力.滿分12分.

              解:(I).除第N組外的每組至少含有個(gè)數(shù).

              (II)當(dāng)?shù)趎組形成后,因?yàn)?sub>,所以還有數(shù)沒分完,這時(shí)余下的每個(gè)數(shù)必大于余差,余下數(shù)之和也大于第n組的余差,即

              ,

              由此可得.

              因?yàn)?sub>,所以.

              (III)用反證法證明結(jié)論,假設(shè),即第11組形成后,還有數(shù)沒分完,由(I)和(II)可知,余下的每個(gè)數(shù)都大于第11組的余差,且,

              故余下的每個(gè)數(shù) .   (*)

              因?yàn)榈?1組數(shù)中至少含有3個(gè)數(shù),所以第11組數(shù)之和大于,

              此時(shí)第11組的余差,

              這與(*)式中矛盾,所以.

           


          同步練習(xí)冊(cè)答案