日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 周期為T=y=cotx 查看更多

           

          題目列表(包括答案和解析)

          函數(shù)y=sinx(3sinx+4cosx)(x∈R)的最大值為M,最小正周期為T,則有序數(shù)對(duì)(M,T)為( 。
          A、(5,π)B、(4,π)C、(-1,2π)D、(4,2π)

          查看答案和解析>>

          設(shè)y=f(x)是定義在區(qū)間(a,b)(b>a)上的函數(shù),若對(duì)?x1、x2∈(a,b),都有|f(x1)-f(x2)|≤|x1-x2|,則稱y=f(x)是區(qū)間(a,b)上的平緩函數(shù).
          (1)試證明對(duì)?k∈R3,f(x)=x2+kx+14都不是區(qū)間(-1,1)5上的平緩函數(shù);
          (2)若f(x)是定義在實(shí)數(shù)集R上的、周期為T=2的平緩函數(shù),試證明對(duì)?x1、x2∈R,|f(x1)-f(x2)|≤1.

          查看答案和解析>>

          給出下列命題:
          ①正切函數(shù)的圖象的對(duì)稱中心是唯一的;
          ②y=|sinx|、y=|tanx|的周期分別為π、
          π
          2
          ;
          ③若x1>x2,則sinx1>sinx2;
          ④若f(x)是R上的奇函數(shù),它的最小正周期為T,則f(-
          T
          2
          )=0.
          其中正確命題的序號(hào)是
           

          查看答案和解析>>

          已知函數(shù)y=Asin(ωx+?)+B(A>0,ω>0,|?|<
          π
          2
          )
          的周期為T,在一個(gè)周期內(nèi)的圖象如圖所示,則φ=
          -
          π
          6
          -
          π
          6

          查看答案和解析>>

          (2012•浦東新區(qū)二模)已知函數(shù)y=f(x),x∈D,如果對(duì)于定義域D內(nèi)的任意實(shí)數(shù)x,對(duì)于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類增周期函數(shù),周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類周期函數(shù),周期為T.
          (1)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級(jí)類增周期函數(shù),求實(shí)數(shù)a的取值范圍;
          (2)已知 T=1,y=f(x)是[0,+∞)上m級(jí)類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)遞增函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=2x,求實(shí)數(shù)m的取值范圍;
          (3)下面兩個(gè)問題可以任選一個(gè)問題作答,如果你選做了兩個(gè),我們將按照問題(Ⅰ)給你記分.
          (Ⅰ)已知當(dāng)x∈[0,4]時(shí),函數(shù)f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級(jí)類周期函數(shù),且y=f(x)的值域?yàn)橐粋(gè)閉區(qū)間,求實(shí)數(shù)m的取值范圍;
          (Ⅱ)是否存在實(shí)數(shù)k,使函數(shù)f(x)=coskx是R上的周期為T的T級(jí)類周期函數(shù),若存在,求出實(shí)數(shù)k和T的值,若不存在,說明理由.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案