日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 整理.得. 所以動點P的軌跡為直線.故選(D). 查看更多

           

          題目列表(包括答案和解析)

          斜率為1的直線過拋物線的焦點,與拋物線交于兩點A、B將直線AB接向量平移得直線的動點,M為拋物線弧AB上的動點

          ①若,求拋物線方程

          ②求的最大值

          ③求的最小值

          查看答案和解析>>

          已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。

          (I)求曲線的方程;

          (II)試證明:在軸上存在定點,使得總能被軸平分

          【解析】第一問中設(shè)為曲線上的任意一點,則點在圓上,

          ,曲線的方程為

          第二問中,設(shè)點的坐標(biāo)為,直線的方程為,  ………………3分   

          代入曲線的方程,可得 

          ,∴

          確定結(jié)論直線與曲線總有兩個公共點.

          然后設(shè)點,的坐標(biāo)分別, ,則,  

          要使軸平分,只要得到。

          (1)設(shè)為曲線上的任意一點,則點在圓上,

          ,曲線的方程為.  ………………2分       

          (2)設(shè)點的坐標(biāo)為,直線的方程為,  ………………3分   

          代入曲線的方程,可得 ,……5分            

          ,∴

          ∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結(jié)論)

          ………………6分

          設(shè)點,的坐標(biāo)分別, ,則,   

          要使軸平分,只要,            ………………9分

          ,        ………………10分

          也就是,,

          ,即只要  ………………12分  

          當(dāng)時,(*)對任意的s都成立,從而總能被軸平分.

          所以在x軸上存在定點,使得總能被軸平分

           

          查看答案和解析>>

          設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標(biāo)原點.

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點P的坐標(biāo)為.由題意,有  ①

          ,得,

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

          由條件得消去并整理得  ②

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

          由P在橢圓上,有

          因為,,所以,即   ③

          ,得整理得.

          于是,代入③,

          整理得

          解得

          所以.

           

          查看答案和解析>>

          已知曲線上動點到定點與定直線的距離之比為常數(shù)

          (1)求曲線的軌跡方程;

          (2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

          (3)以曲線的左頂點為圓心作圓,設(shè)圓與曲線交于點與點,求的最小值,并求此時圓的方程.

          【解析】第一問利用(1)過點作直線的垂線,垂足為D.

          代入坐標(biāo)得到

          第二問當(dāng)斜率k不存在時,檢驗得不符合要求;

          當(dāng)直線l的斜率為k時,;,化簡得

          第三問點N與點M關(guān)于X軸對稱,設(shè),, 不妨設(shè)

          由于點M在橢圓C上,所以

          由已知,則

          由于,故當(dāng)時,取得最小值為

          計算得,,故,又點在圓上,代入圓的方程得到.  

          故圓T的方程為:

           

          查看答案和解析>>

          設(shè)橢圓(常數(shù))的左右焦點分別為,是直線上的兩個動點,

          (1)若,求的值;

          (2)求的最小值.

          【解析】第一問中解:設(shè),

              由,得

            ② 

          第二問易求橢圓的標(biāo)準(zhǔn)方程為:

          ,

          所以,當(dāng)且僅當(dāng)時,取最小值

          解:設(shè), ……………………1分

          ,由     ①……2分

          (1)由,得  ②   ……………1分

              ③    ………………………1分

          由①、②、③三式,消去,并求得. ………………………3分

          (2)解法一:易求橢圓的標(biāo)準(zhǔn)方程為:.………………2分

          , ……4分

          所以,當(dāng)且僅當(dāng)時,取最小值.…2分

          解法二:, ………………4分

          所以,當(dāng)且僅當(dāng)時,取最小值

           

          查看答案和解析>>


          同步練習(xí)冊答案