日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [評析]主要考查.與函數(shù)單調(diào)性的關(guān)系提高型題組 查看更多

           

          題目列表(包括答案和解析)

          已知命題“橢圓的焦點在軸上”;

          命題上單調(diào)遞增,若“”為假,求的取值范圍.

          【解析】主要考查了命題中復(fù)合命題的真值問題的判定,以及橢圓,導(dǎo)數(shù)的運用。

          首先求解若p為真,則m2.

          若q為真,=0在R上恒成立。

          所以      所以

          而要是為假,則,這樣就可以得到了。

          若p為真,則m2.                                              2分

             若q為真,=0在R上恒成立。      

          所以      所以                        3分

          為假,所以為真                                    2分

          所以m2且,     所以

           

          查看答案和解析>>

          已知是等差數(shù)列,其前n項和為, 是等比數(shù)列,且 

          (I)求數(shù)列的通項公式;

          (II)記求證:,。

          【考點定位】本小題主要考查等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和公式、數(shù)列求和等基礎(chǔ)知識.考查化歸與轉(zhuǎn)化的思想方法.考查運算能力、推理論證能力.

           

          查看答案和解析>>

          過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.

          (I)試證明兩點的縱坐標(biāo)之積為定值;

          (II)若點是定直線上的任一點,試探索三條直線的斜率之間的關(guān)系,并給出證明.

          【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

          (1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得 

           (2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之

          設(shè)點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

            

          KAN+KBN=+

          本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

           

          查看答案和解析>>

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

          于是對一切恒成立,當(dāng)且僅當(dāng).       、

          當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

          故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),

          從而,

          所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

           

          查看答案和解析>>

          如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

          (Ⅰ)證明:BD⊥PC;

          (Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

          【解析】(Ⅰ)因為

          是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,

          平面PAC,所以.

          (Ⅱ)設(shè)AC和BD相交于點O,連接PO,由(Ⅰ)知,BD平面PAC,

          所以是直線PD和平面PAC所成的角,從而.

          由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因為四邊形ABCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積

          在等腰三角形AOD中,

          所以

          故四棱錐的體積為.

          【點評】本題考查空間直線垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計算.第一問只要證明BD平面PAC即可,第二問由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積

           

          查看答案和解析>>


          同步練習(xí)冊答案