日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 14.設(shè).則.故為增函數(shù).由a<b. 查看更多

           

          題目列表(包括答案和解析)

          .設(shè)f(x)=ax3bx2cxd(a>0),則f(x)為增函數(shù)的充要條件是

          A.b2-4ac>0                                                  B.b>0,c>0

          C.b=0,c>0                                                      D.b2-3ac<0

          查看答案和解析>>

          設(shè)f(x)=ax3+bx2+cx+d(a>0),則f(x)為增函數(shù)的充要條件是


          1. A.
            b2-4ac>0
          2. B.
            b>0,c>0
          3. C.
            b=0,c>0
          4. D.
            b2-3ac<0

          查看答案和解析>>

          對于定義在區(qū)間上的函數(shù),給出下列命題:(1)若在多處取得極大值,那么的最大值一定是所有極大值中最大的一個值;(2)若函數(shù)的極大值為,極小值為,那么;(3)若,在左側(cè)附近,且,則的極大值點;(4)若上恒為正,則上為增函數(shù),

          其中正確命題的序號是                  

          查看答案和解析>>

          已知,函數(shù)

          (1)當時,求函數(shù)在點(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

          【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

          對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當時,  又    

          ∴  函數(shù)在點(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時,極大值為,無極小值

          時  極大值是,極小值是        ----------8分

          (Ⅲ)設(shè)

          求導,得

          ,    

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實數(shù)的取值范圍是(,

           

          查看答案和解析>>

          9、設(shè)偶函數(shù)f(x)=loga|x-b|在(-∞,0)為增函數(shù),則f(a+1)與f(b+2)的大小關(guān)系是
          f(a+1)>f(b+2)

          查看答案和解析>>


          同步練習冊答案