日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解析]令.則.故選C. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)定義在(0,+)上的函數(shù)

          (Ⅰ)求的最小值;

          (Ⅱ)若曲線在點(diǎn)處的切線方程為,求的值。

           【解析】 (Ⅰ)因,故,取等號(hào)的條件是,即。

          (Ⅱ)因,由,求得,又由,可得,解得

           

          查看答案和解析>>

          【解析】B.由題得所以選B.

          查看答案和解析>>

          把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

          (1)求函數(shù)的解析式; (2)若,證明:.

          【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問(wèn)中,利用設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問(wèn)中,令,然后求導(dǎo),利用最小值大于零得到。

          (1)解:設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

          (2) 證明:令,……6分

          ……8分

          ,∴,∴上單調(diào)遞增.……10分

          ,即

           

          查看答案和解析>>

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

          于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

          當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

          故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng)

          從而,

          所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

           

          查看答案和解析>>

          已知,函數(shù)

          (1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

          【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

          對(duì)a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當(dāng)時(shí),  又    

          ∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當(dāng)時(shí)

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無(wú)極小值。 

          綜上所述   時(shí),極大值為,無(wú)極小值

          時(shí)  極大值是,極小值是        ----------8分

          (Ⅲ)設(shè)

          對(duì)求導(dǎo),得

          ,    

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實(shí)數(shù)的取值范圍是(,

           

          查看答案和解析>>

          1. 由函數(shù)6ec8aac122bd4f6e知,當(dāng)時(shí),,且6ec8aac122bd4f6e,則它的反函數(shù)過(guò)點(diǎn)(3,4),故選A.  

           

          2.∵,∴,則,即.,選B.

          3. 由平行四邊形法則,,

          ,

          ,

          ,當(dāng)P為中點(diǎn)時(shí),取得最小值.選B.

          4. 設(shè)是橢圓的一個(gè)焦點(diǎn),它是橢圓三個(gè)頂點(diǎn),,構(gòu)成的三角形的垂心(如圖).由,即,∴,得,解得,選A.

           

          5. 設(shè)正方形邊長(zhǎng)為,,則,.在由正弦定理得,又在由余弦定理得,于是,,選C.

          6. 在底面上的射影知,為斜線在平面上的射影,∵,由三垂線定理得,∵,所以直線與直線重合,選A.

           

          7. 過(guò)A作拋物線的準(zhǔn)線的垂線AA1交準(zhǔn)線A1,  過(guò)B作橢圓的右準(zhǔn)線的垂線交右準(zhǔn)線于則有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周長(zhǎng)=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB,

          由可得兩曲線的交點(diǎn)x=,xB∈(,2),

          ∴3+xB∈(,4),即△ANB周長(zhǎng)取值范圍是(,4),選B.

           

          8. 先將3,5兩個(gè)奇數(shù)排好,有種排法,再將4,6兩個(gè)偶數(shù)插入3,5中,有種排法,最后將1,2 當(dāng)成一個(gè)整體插入5個(gè)空位中,所以這樣的六位數(shù)的個(gè)數(shù)為,選B.


          同步練習(xí)冊(cè)答案