日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由 , 得.所以點B到平面OCD的距離為點評:線面平行的證明.異面直線所成的角.點到直線的距離.既可以用綜合方法求解.也可以用向量方法求解.后者較簡便.但新課標(biāo)地區(qū)文科沒學(xué)空間向量.例題9證明:由三視圖可得直觀圖為直三棱柱且底面ADF中AD⊥DF,DF=AD=DC (1)連接DB.可知B.N.D共線.且AC⊥DN 又FD⊥AD FD⊥CD. 查看更多

           

          題目列表(包括答案和解析)

          在平面直角坐標(biāo)系中,曲線的參數(shù)方程為

             是曲線上的動點.

            (1)求線段的中點的軌跡的直角坐標(biāo)方程;

            (2) 以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,若直線的極坐標(biāo)方程為,求點到直線距離的最大值.

          【解析】第一問利用設(shè)曲線上動點,由中點坐標(biāo)公式可得

          所以點的軌跡的參數(shù)方程為

          消參可得

          第二問,由題可知直線的直角坐標(biāo)方程為,因為原點到直線的距離為,

          所以點到直線的最大距離為

           

          查看答案和解析>>

          【解析】B.由題得所以選B.

          查看答案和解析>>

          已知,是橢圓左右焦點,它的離心率,且被直線所截得的線段的中點的橫坐標(biāo)為

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)設(shè)是其橢圓上的任意一點,當(dāng)為鈍角時,求的取值范圍。

          【解析】解:因為第一問中,利用橢圓的性質(zhì)由   所以橢圓方程可設(shè)為:,然后利用

              

                橢圓方程為

          第二問中,當(dāng)為鈍角時,,    得

          所以    得

          解:(Ⅰ)由   所以橢圓方程可設(shè)為:

                                                 3分

              

                橢圓方程為             3分

          (Ⅱ)當(dāng)為鈍角時,,    得   3分

          所以    得

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          在復(fù)平面內(nèi), 是原點,向量對應(yīng)的復(fù)數(shù)是,=2+i。

          (Ⅰ)如果點A關(guān)于實軸的對稱點為點B,求向量對應(yīng)的復(fù)數(shù);

          (Ⅱ)復(fù)數(shù),對應(yīng)的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結(jié)論。

          【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

          第二問中,由題意得,=(2,1)  ∴

          同理,所以A、B、C、D四點到原點O的距離相等,

          ∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上

          (Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

               ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

          (Ⅱ)A、B、C、D四點在同一個圓上。                              2分

          證明:由題意得,=(2,1)  ∴

            同理,所以A、B、C、D四點到原點O的距離相等,

          ∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上

           

          查看答案和解析>>


          同步練習(xí)冊答案