日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解法1:設(shè).由解得.- 查看更多

           

          題目列表(包括答案和解析)

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          課外研究題:將一塊圓心角為,半徑為20厘米的扇形鐵片裁成一塊矩形,請(qǐng)你設(shè)計(jì)裁法,使裁得矩形的面積最大?并說(shuō)明理由.

          教學(xué)建議:這是一個(gè)研究性學(xué)習(xí)內(nèi)容,可讓學(xué)生在課外兩人一組合作完成,寫成研究報(bào)告,在習(xí)題課上讓學(xué)生交流研究結(jié)果,老師可適當(dāng)進(jìn)行點(diǎn)評(píng)。

          參考答案:這是一個(gè)如何下料的問(wèn)題,一般有如圖(1)、圖(2)的兩種裁法:即讓矩形一邊在扇形的一條半徑上,或讓矩形一邊與弦平行。從圖形的特點(diǎn)來(lái)看,涉及到線段的長(zhǎng)度和角度,將這些量放置在三角形中,通過(guò)解三角形求出矩形的邊長(zhǎng),再計(jì)算出兩種方案所得矩形的最大面積,加以比較,就可以得出問(wèn)題的結(jié)論.

          查看答案和解析>>

          (理)已知函數(shù)數(shù)學(xué)公式
          (1)試判斷f(x)的奇偶性并給予證明;
          (2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
          (3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
          {an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
          (文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
          (1)求證:F<0;
          (2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,且數(shù)學(xué)公式,求D2+E2-4F的值;
          (3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
          斷點(diǎn)O、G、H是否共線,并說(shuō)明理由.

          查看答案和解析>>

          (理)已知函數(shù)
          (1)試判斷f(x)的奇偶性并給予證明;
          (2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
          (3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
          {an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
          (文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
          (1)求證:F<0;
          (2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,且,求D2+E2-4F的值;
          (3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
          斷點(diǎn)O、G、H是否共線,并說(shuō)明理由.

          查看答案和解析>>

          我們常用定義解決與圓錐曲線有關(guān)的問(wèn)題.如“設(shè)橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>0,b>0)
          的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)左焦點(diǎn)F1作傾斜角為θ的弦AB,設(shè)|F1A|=r1,|F1B|=r2,試證
          1
          r1
          +
          1
          r2
          為定值”.
          證明如下:不妨設(shè)A在x軸的上方,在△ABC中,由橢圓的定義及余弦定理得,(2a-r12=r12+4c2-4cr1cosθ,∴r1=
          b2
          a-ccosθ
          ,
          同理r2=
          b2
          a-ccos(π-θ)
          =
          b2
          a+ccosθ
          ,于是
          1
          r
          1
          +
          1
          r
          2
          =
          2a
          b2
          .請(qǐng)用類似的方法探索:設(shè)雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)左焦點(diǎn)F1作傾斜角為θ的直線與雙曲線右支交于點(diǎn)A,左支交于點(diǎn)B,設(shè)|F1A|=r1,|F1B|=r2,是否有類似的結(jié)論成立,請(qǐng)寫出與定值有關(guān)的結(jié)論是______..

          查看答案和解析>>


          同步練習(xí)冊(cè)答案