日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 20.解:(1)依題意 ..故 -----1分, 查看更多

           

          題目列表(包括答案和解析)

          設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點P的坐標為.由題意,有  ①

          ,得,

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點P的坐標為.

          由條件得消去并整理得  ②

          ,,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點P的坐標為.

          由P在橢圓上,有

          因為,所以,即   ③

          ,,得整理得.

          于是,代入③,

          整理得

          解得,

          所以.

           

          查看答案和解析>>

          已知,函數(shù)

          (1)當(dāng)時,求函數(shù)在點(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

          【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中,那么當(dāng)時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

          對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當(dāng)時,  又    

          ∴  函數(shù)在點(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當(dāng)

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當(dāng)時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時,極大值為,無極小值

          時  極大值是,極小值是        ----------8分

          (Ⅲ)設(shè),

          求導(dǎo),得

          ,    

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實數(shù)的取值范圍是(

           

          查看答案和解析>>

          現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.

          (Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;

          (Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;

          (Ⅲ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學(xué)期望.

          【解析】依題意,這4個人中,每個人去參加甲游戲的概率為,去參加乙游戲的概率為.

          設(shè)“這4個人中恰有i人去參加甲游戲”為事件

          .

          (1)這4個人中恰有2人去參加甲游戲的概率

          (2)設(shè)“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故

          所以,這個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.

          (3)的所有可能取值為0,2,4.由于互斥,互斥,故

              

          所以的分布列是

          0

          2

          4

          P

          隨機變量的數(shù)學(xué)期望.

           

          查看答案和解析>>

          已知函數(shù),.

          (Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

          (Ⅱ)若存在實數(shù),使對任意的,不等式 恒成立.求正整數(shù)的最大值.

          【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點可知導(dǎo)數(shù)為零可以解得方程有三個不同的實數(shù)根來分析求解。

          第二問中,利用存在實數(shù),使對任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

          解:(1)

          (2)不等式 ,即,即.

          轉(zhuǎn)化為存在實數(shù),使對任意的,不等式恒成立.

          即不等式上恒成立.

          即不等式上恒成立.

          設(shè),則.

          設(shè),則,因為,有.

          在區(qū)間上是減函數(shù)。又

          故存在,使得.

          當(dāng)時,有,當(dāng)時,有.

          從而在區(qū)間上遞增,在區(qū)間上遞減.

          [來源:]

          所以當(dāng)時,恒有;當(dāng)時,恒有;

          故使命題成立的正整數(shù)m的最大值為5

           

          查看答案和解析>>


          同步練習(xí)冊答案