日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 中的不等式 成立.求的取值范圍. 查看更多

           

          題目列表(包括答案和解析)

          對(duì)于函數(shù)f(x),g(x),h(x),如果存在實(shí)數(shù)a,b,使得h(x)=af(x)+bg(x),那么稱h(x)為f(x),g(x)的線性生成函數(shù).
          (1)給出如下兩組函數(shù),試判斷h(x)是否分別為f(x),g(x)的線性生成函數(shù),并說(shuō)明理由.
          第一組:;
          第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
          (2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數(shù)為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍;
          (3)已知的線性生成函數(shù)h(x),其中a>0,b>0.若h(x)≥b對(duì)a∈[1,2]恒成立,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          對(duì)于函數(shù)f(x),g(x),h(x),如果存在實(shí)數(shù)a,b,使得h(x)=af(x)+bg(x),那么稱h(x)為f(x),g(x)的線性生成函數(shù).
          (1)給出如下兩組函數(shù),試判斷h(x)是否分別為f(x),g(x)的線性生成函數(shù),并說(shuō)明理由.
          第一組:數(shù)學(xué)公式;
          第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
          (2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數(shù)為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍;
          (3)已知數(shù)學(xué)公式的線性生成函數(shù)h(x),其中a>0,b>0.若h(x)≥b對(duì)a∈[1,2]恒成立,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          設(shè)不等式所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的格點(diǎn)(x,y)(x,y∈Z)的個(gè)數(shù)為f(n)(n∈N*).(注:格點(diǎn)是指橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn))
          (Ⅰ)求f(1),f(2)的值及f(n)的表達(dá)式;
          (Ⅱ)記,若對(duì)于任意n∈N*,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍;
          (Ⅲ)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,其中,問(wèn)是否存在正整數(shù)n,t,使成立,若存在,求出正整數(shù)n,t;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          對(duì)于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意∈D,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間D上的“平底型”函數(shù).

             (1)判斷函數(shù)是否為R上的“平底型”函數(shù)?并說(shuō)明理由;

             (2)設(shè)是(1)中的“平底型”函數(shù),k為非零常數(shù),若不等式 對(duì)一切R恒成立,求實(shí)數(shù)的取值范圍;

             (3)若函數(shù)是區(qū)間上的“平底型”函數(shù),求的值.

          查看答案和解析>>

          對(duì)于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意∈D,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間D上的“平底型”函數(shù).

             (1)判斷函數(shù)是否為R上的“平

          底型”函數(shù)?并說(shuō)明理由;

             (2)設(shè)是(1)中的“平底型”函數(shù),k為非零常數(shù),若不等式

           對(duì)一切R恒成立,求實(shí)數(shù)的取值范圍;

             (3)若函數(shù)是區(qū)間上的“平底型”函數(shù),求的值.

          查看答案和解析>>

                   天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長(zhǎng)  么世濤

          一、選擇題 :1-4, BBBB ;5-8,DABD。

          提示:1.

          2.

          3.用代替

          4.

          5.,

          6.

          7.略

          8.     

          二、填空題:9.60;  10. 15:10:20   ;  11.;  12.;

          13.0.74  ; 14. ①、;②、圓;③.

          提示: 9.

          10.,,

          11.,

          12.,,,

          ,

          13.

          14.略

           

          三、解答題

          15. 解:(1).    

            (2)設(shè)抽取件產(chǎn)品作檢驗(yàn),則,  

              ,得:,即

             故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.  

          16. 解:由題意得,,原式可化為,

             

          故原式=.

          17. 解:(1)顯然,連接,∵,,

          .由已知,∴.

           ∵, ,

          .

           ∴.        

           (2)     

          當(dāng)且僅當(dāng)時(shí),等號(hào)成立.此時(shí),即的中點(diǎn).于是由,知平面是其交線,則過(guò)

          。

           ∴就是與平面所成的角.由已知得,

           ∴, , .      

          (3) 設(shè)三棱錐的內(nèi)切球半徑為,則

          ,,,

           ∴.     

          18. (1)    

          (2) ∵ ,

          ∴當(dāng)時(shí),      

          ∴當(dāng)時(shí),  

          ,,,.

          的最大值為中的最大者.

          ∴ 當(dāng)時(shí),有最大值為

          19.(1)解:∵函數(shù)的圖象過(guò)原點(diǎn),

          ,

          .      

          又函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱,

          , .

          (2)解:由題意有  即

           即,即.

           ∴數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列.

           ∴,即. ∴.

            ∴ ,,

          (3)證明:當(dāng)時(shí),   

           故       

          20. (1)解:∵,又,

              ∴.             又∵     

              ,且

          .        

          (2)解:由,,猜想

              (3)證明:用數(shù)學(xué)歸納法證明:

              ①當(dāng)時(shí),,猜想正確;

              ②假設(shè)時(shí),猜想正確,即

          1°若為正奇數(shù),則為正偶數(shù),為正整數(shù),

             

             2°若為正偶數(shù),則為正整數(shù),

          ,又,且

          所以

          即當(dāng)時(shí),猜想也正確          

             

          由①,②可知,成立.     

          (二)

          一、1-4,AABB,5-8,CDCB;

          提示: 1.  即   

          2.   即

          3.   即,也就是 ,

          4.先確定是哪兩個(gè)人的編號(hào)與座位號(hào)一致,有種情況,如編號(hào)為1的人坐1號(hào)座位,且編號(hào)為2的人坐2號(hào)座位有以下情形:

          <sub id="o5kww"></sub>

            1. 人的編號(hào)

              1

              2

              3

              4

              5

              座位號(hào)

              1

              2

              5

              3

              4

               

              人的編號(hào)

              1

              2

              3

              4

              5

              座位號(hào)

              1

              2

              4

              5

              3

               

                                                               

               

               

              所以,符合條件的共有10×2=20種。

              5. ,又,所以

              ,且,所以

              6.略

              7.略

              8. 密文shxc中的s對(duì)應(yīng)的數(shù)字為19,按照變換公式:

              ,原文對(duì)應(yīng)的數(shù)字是12,對(duì)應(yīng)的字母是;

              密文shxc中的h對(duì)應(yīng)的數(shù)字為8,按照變換公式:

              ,原文對(duì)應(yīng)的數(shù)字是15,對(duì)應(yīng)的字母是;

              二、9.; 10.2;11.-48; 12. ; 13、5; 14、①3,②,③

              提示:

              9.  ,,

              10. 數(shù)列是首相為,公差為的等差數(shù)列,于是

                又,所以

              11. 特殊值法。取通徑,則,

              。

              12.因,,所以同解于

              所以。

              13.略 。

               

              14、(1)如圖:∵

              ∴∠1=∠2=∠3=∠P+∠PFD          

              =∠FEO+∠EFO

              ∴∠FEO=∠P,可證△OEF∽△DPF

              即有,又根據(jù)相交弦定理DF?EF=BF?AF

              可推出,從而

              ∴PF=3

              (2) ∵PFQF,  ∴  ∴

              (3)略。

              三、15.解:(1)  依題知,得  

              文本框: 子曰:三人行,必有我?guī)熝桑簱衿渖普叨鴱闹,其不善者而改之。精通?nèi)部學(xué)員使用么老師答疑電話
13702071025
 所以

              (2) 由(1)得

                  

              ∴            

              的值域?yàn)?sub>。

               

              16.解:設(shè)飛機(jī)A能安全飛行的概率為,飛機(jī)B能安全飛行的概率為,則

                所以

              當(dāng)時(shí),,;

              當(dāng)時(shí),,;

              當(dāng)時(shí),,;

              故當(dāng)時(shí),飛機(jī)A安全;當(dāng)時(shí),飛機(jī)A與飛機(jī)B一樣安全;當(dāng)時(shí),飛機(jī)B安全。

               

              17.(1) 證明:以D為坐標(biāo)原點(diǎn),DA所在的直線x

              軸,建立空間直角坐標(biāo)系如圖。

              設(shè),則

              ,,

              ,

              ,所以

                                  即  ,也就是

              ,所以 ,即

              (2)解:方法1、找出二面角,再計(jì)算。

               

              方法2、由(1)得:(當(dāng)且僅當(dāng)取等號(hào))

              分別為的中點(diǎn),于是 。

              ,所以 ,

              設(shè)是平面的一個(gè)法向量,則

                也就是

              易知是平面的一個(gè)法向量,

                                 

              18.(1) 證明:依題知得:

              整理,得

               所以   即 

              故 數(shù)列是等差數(shù)列。

              (2) 由(1)得   即 ()

                所以

               =

              =

               

              19.解:(1) 依題知得

              欲使函數(shù)是增函數(shù),僅須

              同步練習(xí)冊(cè)答案
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>